
TotalView

Command Line

Interface Guide

August 2001

Version 5.0

Copyright © 1999–2001 by Etnus LLC. All rights reserved.
Copyright © 1998–1999 by Etnus Inc. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus
LLC (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus
assumes no responsibility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC. TimeScan and Gist are trademarks of Etnus LLC.

All other brand names are the trademarks of their respective holders.
ii

Contents
1 TotalView Command Line Interface
What Is the CLI .. 1
Document Contents .. 2
Conventions .. 4
Reporting Problems ... 4

2 A Few CLI/Tcl Macros
Setting the EXECUTABLE_PATH State Variable 7
Initializing an Array Slice ... 9
Printing an Array Slice ... 9
Writing an Array Variable to a File ... 10
Setting Breakpoints ... 11

3 Groups, Processes, and Threads
A Couple of Processes .. 15
Some Threads .. 17
Even More Complicated Programming Models 19
More on Threads ... 20

Types of User Threads .. 22
Organizing Chaos .. 23
Creating Groups .. 28
Simplifying What You’re Debugging ... 35
Setting Process and Thread Focus .. 38

Process/Thread Sets ... 38
Arenas ... 39
GOI, POI, and TOI ... 40
Specifying Processes and Threads .. 41

The Thread of Interest ... 41
Process and Thread Widths .. 42
Version 5.0 Command Line Interface Guide iii

i

Contents

i

Examples ... 44
Setting Group Focus ..44

Specifying Groups in P/T Sets ...46
Specifier Combinations ..48

All Does Not Always Mean All ...50
Setting Groups ..52
An Extended Example ...54
Incomplete Arena Specifiers ...57
Lists with Inconsistent Widths ...58

Stepping ...59
Thread .. 59
Process .. 59
Group ... 60
Using duntil ...60

How do I61
“Piling Up” vs. “Running Through” ...62
P/T Set Expressions ...63

4 Using the CLI
How a Debugger Operates ...67

Tcl and the CLI ..68
The CLI and TotalView ...68
The CLI Interface ...69

Starting the CLI ..70
Initializing the Debugger ..71
Start-up Example ..72
Starting Your Program ...73

CLI Output ...76
“more” Processing ...77

Command Arguments ..77
Symbols ...78

Namespaces.. 78
Symbol Names and Scope .. 79
Qualifying Symbol Names ...80

Command and Prompt Formats ..81
Built-In Aliases and Group Aliases ...82
Effects of Parallelism on TotalView and CLI Behavior83

Kinds of IDs ...84
Controlling Program Execution ..85

Advancing Program Execution .. 85
v Cli Guidev Command Line Interface Guide Version 5.0

Contents
Action Points .. 86

5 Type Transformations
Type Transformation Defined .. 87

Creating Type Transformations ... 89
Using Type Transformation ... 89

Defining Prototypes ... 91
Objects Used in Type Transformation .. 94

Creating a struct Type Transformation .. 95
Validating the Type: the list_validate Procedure 95
Redefining the Type: list_type Procedure 96
Creating the Prototype .. 97
Making a Callback for a Structure Element 97

Applying Prototypes to Images ... 98
Initializing TotalView After Loading an Image 99

An Array-Like Example .. 100
Indicating if a Type Is Mapped: The vector_validate Callback 100

Returning the Type: The vector_type Callback 102
Returning the Rank: The vector_rank Callback 102
Returning the Bounds: The vector_bounds Callback 102
Returning the Address: The vector_address Callback 103
The typedef Callback ... 104

Utility Procedures .. 104
The read_store Utility Procedure... 105
The ultimate_base Utility Procedure .. 105
The extract_offset Utility Procedure ... 106

Creating the Prototype .. 106
Distributed Arrays ... 107

Visualizing a Distributed Array with Node Information 109
The Type Transformation for mandel.c 110
Validating the Data Type: The da_validate Function 110
The da_distribution Callback Procedure 112
The Distributed Addressing Callback .. 113

Addressing Expressions .. 114
Debugging Tcl Callback Code .. 118

6 CLI Commands
Command Overview .. 119
actionpoint.. 123
alias ... 126
Version 5.0 Command Line Interface Guide v

v

Contents

v

capture... 128
dactions ... 129
dassign... 132
dattach .. 134
dbarrier .. 137
dbreak.. 142
dcheckpoint... 145
dcont ... 148
ddelete... 150
ddetach.. 151
ddisable ... 152
ddown.. 153
dec2hex ... 155
denable .. 156
dfocus .. 157
dgo... 160
dgroups.. 162
dhalt... 168
dhold.. 169
dkill .. 170
dlappend.. 171
dlist .. 172
dload.. 175
dnext.. 177
dnexti... 180
dout ... 183
dprint ... 186
dptsets... 190
drerun .. 193
drestart .. 195
drun ... 197
dset.. 200
dstatus... 209
dstep.. 211
dstepi... 215
dunhold ... 217
dunset.. 218
duntil.. 219
dup... 222
dwait .. 224
i Cli Guidei Command Line Interface Guide Version 5.0

Contents
dwatch... 225
dwhat... 229
dwhere... 233
dworker.. 235
errorCodes... 236
exit... 238
focus_groups... 239
focus_processes.. 240
focus_threads.. 241
group ... 242
help ... 244
hex2dec ... 246
image... 247
process.. 250
prototype .. 253
quit .. 257
respond ... 258
stty .. 259
source_process_startup.. 260
thread .. 261
type ... 263
unalias ... 266

A CLI Command Summary.. 267

B CLI Command Default Arena Widths 277

C Distributed Array Type Mapping ... 281

The cyclic_array.tcl Type Mapping File ... 286

Glossary... 291

Citations .. 304

Index... 305
Version 5.0 Command Line Interface Guide vii

vi

Contents

vi
ii Cli Guideii Command Line Interface Guide Version 5.0

Version 5.0
Chapter 1
TotalView Command Line Interface
This document describes the TotalView® Command Line Interface (CLI). The CLI
is a command-oriented debugger that can be used as a stand-alone product or
it can be used along with the TotalView Graphical User Interface (GUI) debugger.
Depending on your needs, you can view the CLI and TotalView debuggers as
being either independent or complementary products. In most cases, the easiest
way to debug programs is by using the TotalView GUI. However, there are cir-
cumstances when you need to do something not possible or practical using a
GUI. For example, you may not want to interactively debug a program that takes
days to execute.

The CLI debugger commands that you will execute are integrated within a Tcl
interpreter. This combination removes the CLI from the realm of standard com-
mand-line debuggers in that you can add your own debugging commands,
automate repetitive tasks, and even have the CLI run your program to a point
where you are ready to begin debugging with the GUI. For example, you could
ask the CLI to watch a memory location for changes and stop the program when
a change occurs.

What Is the CLI

The CLI and TotalView are tools that give you visibility into, and control
over, your programs. These programs can already be executing or you can
load them into memory directly under their control.

The executing program has one or more processes, each associated with an
executable (and perhaps one or more shared libraries) and each occupying
a memory address space. Every process, in turn, has one or more threads,
each with its own set of registers and its own stack.
Command Line Interface Guide 1

1
TotalView Command Line Interface

Document Contents
The program being debugged is the complete set of threads and communi-
cating processes that make up an application. The exact number of pro-
cesses and threads depends on many factors, including how you wrote the
program, the transformations performed by the compiler, the way the pro-
gram was invoked, and the sequence of events that occur during execution.
Thus, the number of processes and threads usually changes while your
program executes.

Some operating systems, compilers, and run-time systems impose restric-
tions on the relationship between processes, threads, and executables.
SPMD (Single Program Multiple Data) programs are parallel programs in-
volving just one executable, executed by multiple threads and processes.
MPMD (Multiple Program Multiple Data) programs involve multiple execut-
ables, each executed by one or more threads and processes.

Document Contents

Using the CLI assumes that you are familiar with and have experience de-
bugging programs with the TotalView GUI. As CLI commands are embedded
within a Tcl interpret, you will get better results if you are familiar with Tcl.
However, if you do not know Tcl, you will still be able to use the CLI. What
you will loose is the programmability features that Tcl gives. For example,
CLI commands operate upon a set of process and threads. You can save
this set and apply it to commands based upon what you have saved.

You can obtain information on using Tcl at many book stores, and you can
also order these books from online bookstores. Two excellent books are

g Ousterhout, John K. Tcl and the Tk Toolkit. Reading, Mass.: Addison Wesley,
1997.

g Welch, Brent B. Practical Programming in Tcl & Tk. Upper Saddle River, N.J.:
Prentice Hall PTR, 1997.

There is also a rich supply of resources available on the Web. Two starting
points are tcl.activestate.com and www.tcltk.com.

The best way to understand the kinds of information in this book is to take
a minute or two to browse through this book’s table of contents. The fast-
2 Command Line Interface Guide Version 5.0

TotalView Command Line Interface

Document Contents
est way to gain an appreciation of the actions performed by CLI commands
is to review Appendix A, which contains an overview of CLI commands.

Here is how the information in this book is organized:

Chapter 1: TotalView Command Line Interface

This first chapter introduces the CLI.

Chapter 2: A Few CLI/Tcl Macros

Because you already know how to program, your biggest challenge in
using the CLI will be remembering its commands and understanding how
they are used within the Tcl environment. This chapter presents a few
macros that demonstrate how the two are used together.

Chapter 3: Groups, Processes, and Threads

Debugging multiprocess, multithreaded programs means that you must
understand the way in which processes and threads execute. This chap-
ter introduces this topic and explains the way you tell the CLI which pro-
cesses and threads it should apply a command to.

Chapter 4: Using the CLI
The CLI commands execute within the Tcl and TotalView environments.
(The code used by the CLI and TotalView that interacts with your pro-
grams is shared.) This chapter explains the general Tcl environment and
how you debug programs using the CLI.

Chapter 5: Type Transformations

There are times when TotalView cannot correctly format your data. For
example, TotalView can have difficulty with the C++ STL. You can solve
this problem by creating Tcl callbacks that tell the TotalView GUI how it
should display information.

Chapter 6: CLI Commands

This chapter contains the man pages for CLI commands.

Appendix A: CLI Command Summary

This appendix contains a listing of all CLI commands, a brief explanation
of what the command does, and a depiction of the command’s syntax.

Appendix B: CLI Command Default Arena Widths

Here you will find a table containing the default focus for each com-
mand. (The focus indicates the processes and threads upon which a com-
mand acts.)

Appendix C: Distributed Array Type Mapping
Version 5.0 Command Line Interface Guide 3

1
TotalView Command Line Interface

Conventions
This appendix contains a listing of an example program that creates a
Mandlebrot set and type mapping for this program.

Conventions

The following table describes the conventions used in this book:

Reporting Problems

Please contact us if you have problems installing TotalView, questions that
are not answered in the product documentation or on our Web site, or sug-
gestions for new features or improvements.

Our Internet E-Mail address is support@etnus.com
Call: 1-800-856-3766 in the United States

(+1) 508-652-7700 worldwide

If you are reporting a problem, please include the following information:

g The version of TotalView and the platform on which you are running
TotalView

TABLE 1: Book Conventions

Convention Meaning
| Choose one of the listed commands. (| means “or”.)
[] Brackets are used when describing parts of a command

that are optional. Be careful to distinguish between
brackets used in command descriptions and brackets
used by Tcl that evaluate expressions.

{ } Braces are used when describing parts of a command
where you must choose one of the options.

arguments Within a command description, text in italic represent
information you type. Elsewhere, italic is used for em-
phasis. You will not have any problems distinguishing
between the uses.

Dark text Within a command description, dark text represent key
words or options that you must type exactly as dis-
played. Elsewhere, it represents words that are used in a
programmatic way rather than their normal way.
4 Command Line Interface Guide Version 5.0

TotalView Command Line Interface

Reporting Problems
g An example that illustrates the problem

g A record of the sequence of events that led to the problem

See the TOTALVIEW RELEASE NOTES for complete instructions on how to
report problems.
Version 5.0 Command Line Interface Guide 5

1
TotalView Command Line Interface

Reporting Problems
6 Command Line Interface Guide Version 5.0

Version 5.0
Chapter 2
A Few CLI/Tcl Macros
You can use the CLI in two ways—and, of course, you can combine these two
ways. The first is as a command-line debugger that works with the TotalView
Graphical User Interface (GUI) debugger. The second is as a debugging program-
ming language that allows you to add your own commands and functions.

This chapter contains a few macros that show how the CLI programmatically
interacts with your program and with TotalView. Reading a few examples with-
out bothering too much with details will give you an appreciation for what the
CLI can do and how it is used. As you will see, you really need to have a basic
knowledge of Tcl before you can make full use of all CLI features.

The chapter presents the following macros:

g Setting the EXECUTABLE_PATH State Variable
g Initializing an Array Slice
g Printing an Array Slice
g Writing an Array Variable to a File
g Setting Breakpoints

Setting the EXECUTABLE_PATH State Variable

The following macro recursively descends through all directories starting at
a location that you enter. (This is indicated by the root argument.) The
macro will ignore directories named in the filter argument. The result is then
set as the value of the CLI EXECUTABLE_PATH state variable.
Command Line Interface Guide 7

2
A Few CLI/Tcl Macros

Setting the EXECUTABLE_PATH State Variable
Usage:
#
rpath <root> <filter>
#
If <root> is not specified, start at the current directory.
#
<filter> is a regular expression that removes unwanted
entries. If it is not specified, the macro automatically filters
out CVS/RCS/SCCS directories.
#
The TotalView search path is set to the result.

proc rpath { { root "." } { filter "/(CVS|RCS|SCCS)(/|$)" } } {

Invoke the UNIX find command to recursively obtain all
directory names below “root”.
set find [split [exec find $root -type d -print] \n]

set npath ""

 # Filter out unwanted directories.
foreach path $find {

if {! [regexp $filter $path] } {
append npath “:”
append npath $path

}
}

Tell TotalView to use it.
dset EXECUTABLE_PATH $npath

}

In this macro, the final statement setting the EXECUTABLE_PATH state
variable is the only statement that is unique to the CLI. All other state-
ments are standard Tcl.

The dset command, like most CLI commands, begins with the letter d. (The
dset command is only used in assigning values to CLI state variables. In
contrast, values are assigned to Tcl variables by using the standard Tcl set
command.)
8 Command Line Interface Guide Version 5.0

A Few CLI/Tcl Macros

Initializing an Array Slice
Initializing an Array Slice

The following macro initializes an array slice to a constant value:

array_set (lower_bound upper bound var val) {
for { set i $lower_bound } { $i <= $upperbound } { incr i } {

dassign $var\($i) $val
}

}

The CLI dassign command assigns a value to a variable. In this case, it is
setting the value of an array element. Here is how you use this function:

d1.<> dprint list3
list3 = {

(1) = 1 (0x0000001)
(2) = 2 (0x0000001)
(3) = 3 (0x0000001)

}
d1.<> array_set 2 3 list 3 99
d1.<> dprint list3
list3 = {

(1) = 1 (0x0000001)
(2) = 99 (0x0000063)
(3) = 99 (0x0000063)

}

Printing an Array Slice

The following macro prints a Fortran array slice. This macro, like other ones
shown in this chapter, relies heavily on Tcl and uses unique CLI commands
sparingly.

proc pf2Dslice {anArray i1 i2 j1 j2 {i3 1} {j3 1} {width 20}} {
for {set i $i1} {$i <= $i2} {incr i $i3} {

set row_out ""
for {set j $j1} {$j <= $j2} {incr j $j3} {

set ij [capture dprint $anArray\($i,$j\)]
set ij [string range $ij \

[expr [string first "=" $ij] + 1] end]
set ij [string trimright $ij]
Version 5.0 Command Line Interface Guide 9

2
A Few CLI/Tcl Macros

Writing an Array Variable to a File
if { [string first "-" $ij] == 1} {
set ij [string range $ij 1 end] }

append ij " "
append row_out " " [string range $ij 0 $width] " "

}
puts $row_out

}
}

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3,
j1:j2:j3) of a Fortran array to a numeric field whose width is specified by the
width argument. This width does not include a leading minus (-) sign.

All but one line is standard Tcl. This line uses the dprint command to
obtain the value of one array element. This element’s value is then cap-
tured into a variable. (dprint does not return a value. The CLI capture com-
mand allows a value that is normally printed to be sent to a variable.)

Here are several examples:

d1.<> pf2Dslice a 1 4 1 4
 0.841470956802 0.909297406673 0.141120001673-0.756802499294
 0.909297406673-0.756802499294-0.279415488243 0.989358246326
 0.141120001673-0.279415488243 0.412118494510-0.536572933197
-0.756802499294 0.989358246326-0.536572933197-0.287903308868

d1.<> pf2Dslice a 1 4 1 4 1 1 17
 0.841470956802 0.909297406673 0.141120001673-0.756802499294
 0.909297406673-0.756802499294-0.279415488243 0.989358246326
 0.141120001673-0.279415488243 0.412118494510-0.536572933197
-0.756802499294 0.989358246326-0.536572933197-0.287903308868

d1.<> pf2Dslice a 1 4 1 4 2 2 10
 0.84147095 0.14112000
 0.14112000 0.41211849

d1.<> pf2Dslice a 2 4 2 4 2 2 10
-0.75680249 0.98935824
 0.98935824-0.28790330

d1.<>

Writing an Array Variable to a File

There are many times when you would like to save the value of an array so
that you can analyze its results at a later time. The following macro writes
an array’s value to a file and saves it.
10 Command Line Interface Guide Version 5.0

A Few CLI/Tcl Macros

Setting Breakpoints
proc save_to_file { var fname } {
set values [capture dprint $var]
set f [open $fname w]

puts $f $values
close $f

}

The following shows how you might use this macro. Notice that using the
exec command lets cat display the file that was just written.

d1.<> dprint list3
list3 = {

(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)

}
d1.<> save_to_file list3 foo
d1.<> exec cat foo
list3 = {

(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)

}
d1.<>

Setting Breakpoints

In many cases, your knowledge of what a program is doing lets you make
predictions as to where problems will occur. The following CLI macro
parses comments that you can include within a source file and, depending
on the comment’s text, sets a breakpoint or an evaluation point.

Immediately following this listing is an excerpt from a program that uses
this macro.

make_actions: Parse a source file, and insert
evaluation and breakpoints according to comments.
#
proc make_actions { { filename ““ } } {
Version 5.0 Command Line Interface Guide 11

2
A Few CLI/Tcl Macros

Setting Breakpoints
if { $filename == ““ } {
puts “You need to specify a filename”
error “No filename”

}

Open the program’s source file and initialize a
few variables.

set fname [set filename]
set fsource [open $fname r]
set lineno 0
set incomment 0

Look for “signals” that indicate the kind of action
point; they are buried in the C comments.

while { [gets $fsource line] != -1} {
incr lineno
set bpline $lineno

Look for a one-line evaluation point. The
format is ... /* EVAL: some_text */.
The text after EVAL and before the “*/” in
the comment is assigned to “code”.

if [regexp “/* EVAL: *(.*)*/” $line all code] {
dbreak $fname\#$bpline -e $code
continue

}

Look for a multiline evaluation point.
if [regexp “/* EVAL: *(.*)” $line all code] {

Append lines to “code”.
while { [gets $fsource interiorline] != -1} {

incr lineno

Tabs will confuse dbreak.
regsub -all \t $interiorline “ “ interiorline

If “*/” is found, add the text to “code”, then
leave the loop. Otherwise, add the text, and
continue looping.
if [regexp “(.*)*/” $interiorline all interiorcode]{

append code \n $interiorcode
break
12 Command Line Interface Guide Version 5.0

A Few CLI/Tcl Macros

Setting Breakpoints
} else {
append code \n $interiorline

}
}
dbreak $fname\#$bpline -e $code
continue

}
Look for a breakpoint.

if [regexp “/* STOP: .*” $line] {
dbreak $fname\#$bpline
continue

}
Look for a command to be executed by Tcl.

if [regexp “/* *CMD: *(.*)*/” $line all cmd] {
puts “CMD: [set cmd]”
eval $cmd

}
}
close $fsource

}

The only similarity between this example and the previous two is that
almost all of the statements are Tcl. The only purely CLI commands are the
instances of the dbreak command. (This command sets evaluation points
and breakpoints.)

The following excerpt from a larger program shows how you would embed
comments within a source file that would be read by this macro:

...
struct struct_bit_fields_only {

unsigned f3 : 3;
unsigned f4 : 4;
unsigned f5 : 5;
unsigned f20 : 20;
unsigned f32 : 32;

} sbfo, *sbfop = &sbfo;
...
int main()
{

struct struct_bit_fields_only *lbfop = &sbfo;
...
Version 5.0 Command Line Interface Guide 13

2
A Few CLI/Tcl Macros

Setting Breakpoints
int i;
int j;
sbfo.f3 = 3;
sbfo.f4 = 4;
sbfo.f5 = 5;
sbfo.f20 = 20;
sbfo.f32 = 32;

...
/* TEST: Check to see if we can access all the values */
i=i; /* STOP: // Should stop */
i=1; /* EVAL: if (sbfo.f3 != 3) $stop; // Should not stop */
i=2; /* EVAL: if (sbfo.f4 != 4) $stop; // Should not stop */
i=3; /* EVAL: if (sbfo.f5 != 5) $stop; // Should not stop */
...
return 0;

}

The make_actions macro reads a source file one line at a time. As it reads
these lines, the regular expressions look for comments that begin with
/* STOP, /* EVAL, and /* CMD. After parsing the comment, it sets a break-
point at a stop line, an evaluation points at an eval line, or executes a com-
mand at a cmd line.

Using evaluation points can be confusing because evaluation point syntax
differs from that of Tcl. In this example, the $stop command is a command
contained within TotalView (and the CLI). It is not a Tcl variable. In other
cases, the evaluation statements will be in the C or Fortran programming
languages.
14 Command Line Interface Guide Version 5.0

Version 5.0
Chapter 3
Groups, Processes, and Threads
While the specifics of how multiprocess, multithreaded programs execute differ
greatly, all share some general characteristics. This chapter defines how Total-
View looks at processes and threads. It also describes the way in which you tell
the CLI which processes and threads it should direct a command to.

A Couple of Processes

When programmers write single-threaded, single-process programs, they
can almost always answer the question “Do you know where your program
is?” These kind of programs are rather simple, looking something like this:

If you use a debugger, any debugger, on something like this, you can almost
always figure out what is going on. Before the program begins executing,
you set a breakpoint, let the program run until it hits the breakpoint, and
then inspect variables to see what they have been set to. If you suspect
there is a logic problem, you can step the program through its statements,
seeing what happens and where things are going wrong.

FIGURE 1: A Uniprocessor

A Computer

A Process
Command Line Interface Guide 15

3
Groups, Processes, and Threads

A Couple of Processes
What is actually occurring is a lot more complicated than this as your com-
puter is executing a great number of programs. For example, your comput-
ing environment could have daemons and other support programs
executing.

These additional processes simplify a programmer’s life because the appli-
cation program no longer had to do everything itself. It could hand some
things off to another program or process and it would do the program’s
bidding.

Figure 2 assumes that the application program only sends requests to the
daemon. More complicated architectures are quite common. For example,
the following figure shows an E-mail program communicating with a dae-
mon on its computer. After receiving a request, this daemon sends data to
an E-mail daemon on another computer which then delivers the data.

This kind of processing assumes that the jobs are disconnected. That is, no
real cooperation exists between the processes. In all cases, one program
hands work to another. After the handoff occurs, there is no more interac-
tion. While this is an extremely useful model, a more general model is one

FIGURE 2: A Program and Daemons

FIGURE 3: Mail with Daemons

A Daemon or

A User Program

Support Program
16 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Some Threads
where a program divides its work, parceling it out to other computers.
When this occurs, one program relies on another program to do some of its
work. To gain any advantage, however, the work being sent to the second
computer has to be work that the first computer does not need right away.
In this way, the two computers act more or less independently. And, be-
cause the first computer did not have to do the work that the second com-
puter did, the program could complete faster. (See Figure 4.)

Here is one of the problems with this scenario: because programs have
bugs, how does a programmer debug what is happening on the second
computer? A horrid solution is to have a debugger running on each com-
puter. A slightly better solution is to create a program the same way as was
done with one computer, get it working, and then split it up so it could use
more than one computer. If done this way, there is a likelihood that any
problems that occur will occur in the code that splits up the problem.

The TotalView solution is even better. It places a server on each processor
as a program is launched. The server then communicates with the “main”
TotalView. This debugging architecture gives you one central location from
which you can manage and examine all aspects of your program.

Some Threads

The support programs just discussed are owned by the operating system.
These programs execute a variety of activities from managing computer re-
sources to providing services such as printing. If the operating system can
have many independently operating components, why can’t a program?

FIGURE 4: Two Computers Working on One Problem

Sends Work

Receives Results

Uses Results
Version 5.0 Command Line Interface Guide 17

3
Groups, Processes, and Threads

Some Threads
One programming model splits the work off into somewhat independent
tasks within the same process. This is the threads model. (See Figure 5.) This
figure also shows, for the last time, the daemon processes that are execut-
ing. From now on, just assume that they are there.

In this computing model, a program (the main thread) creates threads and
these threads can also create threads if they need to. Each thread executes
relatively independently from other threads.

The debugging problem here is similar to the problem of processes running
on different machines. In both cases, a debugger has to intervene with any-
thing that is executing.

In the examples used so far, each executing process and thread is doing
something different and, except for when you need one thread to wait for
another, it is hard to know what any thread is doing. And, the nature of
these kinds of programs prevents you from running your program single-
threaded; that is, having only one thing running at a time.

FIGURE 5: Threads

A thread
18 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Even More Complicated Programming Models
Even More Complicated Programming Models

In the same way that software computing architectures become more com-
plicated, advances in hardware design placed more than one processor
within a computer. So, expanding on what is shown in Figure 4, you could
be writing programs that execute in environments like what is shown in Fig-
ure 6.

This figure shows four linked processors in one computer, each of which
has three threads. This architecture could, in one sense, be thought of as
an extension to the model having more than one computer. And, if you
think of your architecture like this, there is no reason that you can not join
many computers together to solve problems. Figure 7 shows five comput-
ers, each with four processors. Every program running on every processor
has three threads, which means that altogether there are 60 user threads.

This figure depicts only processors and threads. It does not have any infor-
mation about the nature of the programs and threads or even if the pro-
grams are the same or are different.

FIGURE 6: Four-Processor Computer
Version 5.0 Command Line Interface Guide 19

3
Groups, Processes, and Threads

More on Threads
At any time, it is next to impossible to guess which threads are executing
and what a thread is actually executing. To make matters worse, many mul-
tiprocessor programs begin by invoking a process such as mpirun or IBM’s
POE whose function is to distribute and control the work being performed.
In this kind of environment, a program (or the program within a library) is
using another program to control how it distributes work across proces-
sors.

If everything goes right, life is good. When there are problems—and there
are always problems—traditional debuggers and solutions are helpless. As
you will see, TotalView organizes this mass of executing procedures for you
and, because operating systems can complicate things greatly, TotalView
lets you distinguish between threads and processes used by the operating
system and those used by your program.

More on Threads

All threads aren’t the same. Figure 8 shows a program with three threads.

FIGURE 7: Four Processor Computer Networks
20 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

More on Threads
For the moment, assume that all of these threads are “user threads”; that
is, they are threads that perform some activity that you have programmed.

NOTE Many computer architectures have something called “user mode,” “user
space”, or something similar. “User threads” means something else. Without trying
to be rigorous, the TotalView definition of a “user thread” is simply a unit of execu-
tion created by a program.

Other threads can also be executing. For example, the threads that are part
of the operating environment are “manager threads”. Things would be nice
and easy if this was all there was to it. Unfortunately, all threads are not
created equal and all threads do not execute equally. In most cases, a pro-
gram creates manager-like threads. In Figure 8, the horizontal threads at
the bottom of the figure are user-created manager threads.

As these user-created manager threads are designed to perform a service
for other threads in the program, they can also be called “service threads”.

One reason you need to know which of your threads are service threads is
that this kind of thread performs different kinds of activities from other
user threads. Because their activities are so different, they are usually de-
veloped separately and are not involved with the fundamental problems
being solved by the program. For example, a service thread that dispatches

FIGURE 8: Threads

A thread
Version 5.0 Command Line Interface Guide 21

3
Groups, Processes, and Threads

More on Threads
messages sent from other threads may have bugs, but the bugs are of a dif-
ferent kind and the problems they have can most often be dealt with sepa-
rately from bugs that would occur in non service user threads.

A second reason is that you do not want to wait for these threads when
stepping your program because these threads will never get there.

In contrast, your user threads are the agents performing the actual work,
and the interactions among them are where the action is. Being able to dis-
tinguish between the two kinds of threads means that you can focus on the
threads and processes that are actively participating in an activity, rather
than those sitting back and performing more subordinate activities.

Types of User Threads

Sometimes, TotalView can identify which threads are performing service ac-
tivities. In other cases, this is not possible. While some threads can be
identified (and on some architectures this may not be possible), you are of-
ten forced to identify which user threads are performing service activities.

In Figure 10, one of the three nonmanager worker threads performs a dif-
ferent kind of activity than the other two threads. As an example, this

FIGURE 9: User Threads and Service Threads

User Thread

Manager Thread
22 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Organizing Chaos
could be a thread whose sole function is to send data to a printer in re-
sponse to a request from either of the other two threads.

So, while this figure shows five threads, most of your efforts will revolve
around just two threads. These threads two threads are called worker
threads.

Organizing Chaos

While it is possible to attack the kinds of programs that are running thou-
sands of processes across hundreds of computers one-at-a-time, it is not
very practical. What TotalView does is structure these processes for you
and then let you reorganize this information into “groups”. Here are quick
definitions of the four kinds of groups:

g Control Group: All the processes created by a program running on all
processors. That is, the control group includes all processes that are
running on multiple processors. If your program uses processes that it
did not create, these other processes are in another control group.

FIGURE 10: User, Service, and Manager Threads

User Thread

Service Thread

Manager Thread
Version 5.0 Command Line Interface Guide 23

3
Groups, Processes, and Threads

Organizing Chaos
g Share Group: All the processes within a control group that share the
same code. In most cases, your program will have more than one share
group. Share groups, like control groups, can have processes that exe-
cute on more than one processor.

g Workers Group: All the worker threads within a control group. These
threads can be drawn from more than one share group.

g Lockstep Group: All threads that are at the same PC (program counter).
This group is a subset of a workers group. Because all threads execute
asynchronously, a lockstep group only exists for stopped threads. All
threads in the lockstep group are also in a workers group.

In the list, the first two groups contain processes and the last two groups
contain threads. And, notice that “same code” means that the processes
have the same executable file name.

TotalView’s commands let you manipulate processes and threads individu-
ally and by groups. In addition, you can create your own groups and
manipulate a group’s contents (to some extent).

NOTE Not all operating systems let you individually run a thread.

Figure 11 shows a processor running five processes (ignoring daemons and
other programs not related to your program) and the threads within them.
The figure indicates a control group and two share groups.

The elements in this figure are as follows:

CPU Everything represented by this drawing exists within
one processor.

Processes Processes being executed by the CPU.

Control Group The five processes make up the control group. This di-
agram does not indicate which process is the main
procedure.

Share Groups The control group has two share groups. The three
processes in the first share group have the same exe-
cutable. The two processes in the second share group
share a second executable.

Figure 12 looks at how the threads in this drawing are organized. As you
can see, this figure adds the workers group and two lockstep groups.
24 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Organizing Chaos
NOTE The control group is not shown as it encompasses everything in Figure 12.

Here is a description of the added elements in this figure:

Workers Group All non-manager threads within the control group
make up the workers group. Notice that this group in-
cludes service threads.

Lockstep Group Each share group has its own lockstep groups. Graph-
ically, two lockstep groups are indicated, one in each
share group.

If other threads are stopped, this picture indicates
that they are not participating in either of these two
lockstep groups. Recall that a stopped thread is al-
ways in a lockstep group. (It’s OK if a lockstep group
has only one member.)

FIGURE 11: Five Processors and Processor Groups

Control Group

Share Group 2

Share Group 1

One Process

The CPU
Version 5.0 Command Line Interface Guide 25

3
Groups, Processes, and Threads

Organizing Chaos
Service Threads Each process has one service thread. A process can
have any number of service threads. This figure, how-
ever, only shows one.

Manager Threads
The only threads that are not participating in the
workers group are the ten manager threads.

Figure 13 extends the previous figure to show the same kinds of informa-
tion executing on two processors.

This figure differs from the one it is based on in that it has ten processes
executing within two processors rather than five processes within one pro-
cessor. Although the number of processors has changed, the number of
control and share groups is unchanged. This is not to say that the number
of groups could not be different. It’s just they are not in this example.

FIGURE 12: Five Processors and Processor Groups

Share Group 1

Workers Group

Lockstep Group 1

Lockstep Group 2

Share Group 2

Manager Threads

A Service Thread
26 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Organizing Chaos
FIGURE 13: Five Processes and Their Groups on Two Computers
Version 5.0 Command Line Interface Guide 27

3
Groups, Processes, and Threads

Creating Groups
Creating Groups

TotalView automatically creates and places items in groups as they are cre-
ated. The exception is the lockstep groups that are created or changed
whenever a program hits an action point or is stopped for any reason.
While there are many ways that this kind of organization can be built up,
the following steps indicate the beginnings of how this might occur:

1 TotalView and your program are launched and your program begins
executing within TotalView.

Control group: A group is created as the program is loaded.

Share group: A group is created as the program begins executing.

Workers group: The thread in the main routine is the workers group.

Lockstep group: There is no lockstep group because the thread is run-
ning.

FIGURE 14: Step 1: A Program Starts
28 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Creating Groups
2 The program forks a process.

Control group: A second process is added to the existing group.

Share group: A second process is added to the existing group.

Workers group: TotalView adds the thread in the second process to the
existing group.

Lockstep group: There are no lockstep groups because the threads are
running.

FIGURE 15: Step 2: Forking a Process
Version 5.0 Command Line Interface Guide 29

3
Groups, Processes, and Threads

Creating Groups
3 The second process is exec’d.

Control group: The group is unchanged.

Share group: A second share group is created having this exec’d pro-
cess as a member. This process is removed from the first share group.

Workers group: Both threads are in the worker s group.

Lockstep group: There are no lockstep groups because the threads are
running.

4 The first process hits a break point.

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep group: A lockstep group is created whose member is the
thread of the current process. (In this example, each thread is its own
lockstep group.)

FIGURE 16: Step 3: Exec’ing a Process
30 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Creating Groups
5 The program is continued and a second version of your program is
started from the shell. You attach to it within TotalView and put it in
the same control group as your first process.

Control group: A third process is added.

Share group: This third process is added to the first share group.

Workers group: The thread in this third process is added to the group.

Lockstep group: There are no lockstep groups because the threads are
running.

FIGURE 17: Step 5: Creating a Second Version
Version 5.0 Command Line Interface Guide 31

3
Groups, Processes, and Threads

Creating Groups
6 Your program creates a process on another computer.

Control group: The control group is extended so that it contains this
fourth process that is running on the second computer.

Share group: The first share group now contains this newly created
process even though it is running on the second computer.

Workers group: The thread within this fourth process is added to the
workers group.

Lockstep group: There are no lockstep groups because the threads are
running.

FIGURE 18: Step 6: Creating a Remote Process
32 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Creating Groups
7 A process within control group 1 creates a thread. This adds a sec-
ond thread to one of the processes.

Control group: The group is unchanged.

Share group: The group is unchanged.

Workers group: A fourth thread is added to this group.

Lockstep group: There are no lockstep groups because the threads are
running.

FIGURE 19: Step 7: A Thread Is Created
Version 5.0 Command Line Interface Guide 33

3
Groups, Processes, and Threads

Creating Groups
8 A breakpoint is set on a line within a process executing in the first
share group and the breakpoint is shared. The process executes until
all three processes are at the breakpoint.

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep groups: Lockstep groups are created whose members are the
four threads in the first share group.

FIGURE 20: Step 8: Hitting a Breakpoint
34 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Simplifying What You’re Debugging
9 You tell TotalView to step the lockstep group.

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep group: The lockstep groups are unchanged. (Note that there
are other lockstep groups.)

Clearly, this example could keep on going until a much more complicated
system of processes and threads was created. However, it should give you
an idea of what is occurring.

Simplifying What You’re Debugging

It’s time to say something pretty simple: the reason you are using a debug-
ger is because your program isn’t operating correctly and the way you think
you’re going to solve the problem (unless it is a &%$# operating system
problem, which, of course, it usually is) is by stopping your program’s
threads, examining the values assigned to variables, and stepping your
program so you can see what is happening as it executes.

Unfortunately, your multiprocess, multithreaded program and the comput-
ers upon which it is executing have lots of things executing that you want

FIGURE 21: Step 9: Stepping the Lockstep Group
Version 5.0 Command Line Interface Guide 35

3
Groups, Processes, and Threads

Simplifying What You’re Debugging
TotalView to ignore. For example, you don’t want to be examining manager
and service threads created by the operating system, your programming
environment, and your program.

Also, most of us are incapable of understanding exactly how a program is
acting when perhaps thousands of processes are executing asynchro-
nously. Fortunately, there are only a few problems that require full asyn-
chronous behavior.

One of the first simplifications you can make is to change the number of
processes. For example, suppose you have a buggy MPI program running
on 100 processors. Your first step might be to have it execute in a 4-pro-
cessor environment.

After you get the program running under TotalView’s control, you will want
to run the process being debugged to an action point, so you can inspect
the program’s state at that place. In many cases, because your program
has places where processes are forced to wait for an interaction with other
processes, you can ignore what they are doing.

NOTE TotalView lets you control as many groups, processes, or threads as you need
to control. While each can be controlled individually, you will probably have prob-
lems remembering what you’re doing if you’re controlling large numbers of these
things. The reason that TotalView creates and manages groups is so that you can
focus on portions of your program.

In most cases, you do not need to interact with everything that is execut-
ing. Instead, you want to focus on one process and the data that this pro-
cess is manipulating. Things get complicated when the process being
investigated is using data created by other processes, and these processes
may have dependencies on other processes.

All this means that there is a rather typical pattern to the way you use
TotalView to locate problems:

1 At some point, you should make sure that the groups you are manip-
ulating do not contain service or manager threads. (You can remove
processes and threads from a group with the dgroups –remove com-
mand.)
36 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Simplifying What You’re Debugging
2 Place an action point within a process or thread and begin investi-
gating the problem. In many cases, you are setting an action point at
a place where you hope the program is still executing correctly.
Because you are debugging a multiprocess, multithreaded program,
you want to set a barrier point so that all threads and process are at
the same place.

3 After execution stops at the barrier point, look at the contents of
your variables. Verify that your program state is actually correct.

4 Begin stepping your program through its code. In most cases, step
your program synchronously stepping or set barriers so that every-
thing isn’t running freely.

5 Here’s where things begin to get complicated. You’ve been focusing
on one process or thread. If another process or thread is modifying
the data and you become convinced that this is the problem, you’ll
want to go off to it and see what is going on.

The trick here, and it really isn’t much of a trick, is keeping your focus nar-
row, so that you’re just investigating a limited number of behaviors. This is
where debugging becomes an art. A multiprocess, multithreaded program
can be doing a great number of things. Understanding where to look when
problems occur is the “art”.

For example, you’ll most often want to execute commands at the default
focus. Only when you think that the problem is occurring in another pro-
cess will you change to that process. You’ll still be executing in a default
focus, but this time the default focus is focussed at this other process.

In contrast, while you will often want to do something using another focus,
what you will probably do is:

g Modify the focus so that it affects just the next command. For example,
here’s the command that steps thread 7 in process 3:

dfocus t3.7 dstep

(In this example, the dfocus directive tells TotalView to limit the scope of
what it does for the command that immediately follows and then, after
the command completes, to restore the old focus.)

g Use the dfocus command to change focus temporarily, execute a few
commands, and then return to the original focus.
Version 5.0 Command Line Interface Guide 37

3
Groups, Processes, and Threads

Setting Process and Thread Focus
Setting Process and Thread Focus

When the CLI executes a command, TotalView must decide which pro-
cesses and threads it should act upon. Most commands have a default set
of threads and processes and, in most cases, you won’t want to change the
default. There are times, however, when you’ll need to change this default.
This section begins a rather intensive look at how you tell TotalView what
processes and threads it should use as the target of a command.

Process/Thread Sets

All CLI commands operate upon a set a processes and threads. This set is
called a P/T (Process/Thread) set. A P/T set is a Tcl list containing one or more
P/T identifiers. (The next section explains what a P/T identifier is.) Tcl lets
you create lists in two ways:

g You can enter these identifiers within braces ({ }).

g You can use Tcl commands that create and manipulate lists.

These lists are then used as arguments to a CLI command. If you are enter-
ing one element, you usually do not have to use Tcl’s list syntax.

For example, the following list contains specifiers for process 2, thread 1
and process 3, thread 2:

{ p2.1 p3.2 }

Unlike a serial debugger where each command clearly applies to the only
executing thread, the CLI can control and monitor many threads and many
different locations. The P/T set indicates the groups, processes, and
threads that are the target of the CLI command. No limitation exists on the
number of groups, processes, and threads within a set.

If you do not explicitly specify a P/T set, the CLI defines a target set for you.
This set is displayed as the (default) CLI prompt. (For information on this
prompt, see “Command and Prompt Formats” on page 81.)

You can change the focus upon which a command acts by using the dfocus
command. If the CLI executes dfocus as a separate command, it changes
38 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Process and Thread Focus
the default P/T set. For example, if the default focus is process 1, the fol-
lowing command changes the default focus to process 2:

dfocus p2

After the CLI executes this command, the commands that it will now exe-
cute will focus on process 2.

If you type the dfocus command as part of another command, the CLI
changes the target for just the command that follows. After the command
executes, the old default is restored.

The following example shows both of these ways to use the dfocus com-
mand. Assume that the current focus is process 1, thread 1. The following
commands change the default focus to group 2 and then step the threads
in this group twice:

dfocus g2
dstep
dstep

Before the dstep command executes, it looks for the thread of interest—
the thread that was the focus of activity—in group 2. TotalView will then
step all threads in the same lockstep group as the thread of interest.

In contrast, the following commands step group 2 and then step process 1,
thread 1:

dfocus g2 dstep
dstep

This is because the dfocus command is used as a modifier instead of as a
stand-alone command.

Some commands can only operate at the process level—that is, you can-
not apply them to a single thread (or group of threads) in the process but
must apply them to all or to none.

Arenas

A P/T identifier often indicates a number of groups, processes, and
threads. For example, assume that two threads executing the same execut-
able image in process 2 are stopped at the same statement. This means
Version 5.0 Command Line Interface Guide 39

3
Groups, Processes, and Threads

Setting Process and Thread Focus
that TotalView places the two stopped threads into a lockstep group. If the
default focus is process 2, stepping this process actually steps both of
these threads.

The CLI uses the term arena to define the processes and threads that are
the target of an action. In this case, the arena has two threads. Many CLI
commands can act upon one or more arenas. For example, here is a com-
mand with two arenas:

dfocus { p1 p2 }

The two arenas are process 1 and process 2.

GOI, POI, and TOI

You will start see three terms being used:

g GOI, which means Group of Interest

g POI, which means Process of Interest

g TOI, which means Thread of Interest

When the CLI executes a command, the arena decides the scope of what
will run. It does not, however, determine what will run. Depending upon the
command, the CLI looks determines what is the TOI, POI, or GOI, then exe-
cutes upon that thread, process, or group. For example, you tell the CLI to
step the current control group. In this case, it needs to know what the TOI
is so it can determine what the lockstep group. (You can only step a lock-
step group.) The lockstep group, which is a thread group, is part of a share
group, which is a process group. This share group is part of a control
group. So, know it know what the GOI is. This is important because, as you
will see, while it now knows what it will step (the threads in the lockstep
group), it also knows what it will allow to run freely while it is stepping
these threads.

Using the GOI, POI, and TOI will become clearer as you read the rest of this
chapter.
40 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Process and Thread Focus
Specifying Processes and Threads

A previous section said that a P/T set is a list. This ignored what the individ-
ual elements of the list are. A better definition is that a P/T set is a list of
arenas, where an arena is the processes, threads, and groups that are af-
fected by a CLI debugging command. Each arena specifier describes a single
arena in which a command will act; the list is just a collection of arenas.
Most commands iterate over the list, acting individually on an arena. Some
output commands, however, may combine the arenas and act on them as a
single target.

An arena specifier includes a width and a thread of interest. (“Widths” are dis-
cussed later in this section.) Within the P/T set, the thread of interest specifies
a target thread, while the width specifies how many threads surrounding
the thread of interest are affected.

The Thread of Interest
The thread of interest is specified as p.t, where p is the TotalView process
ID (PID) and t is the TotalView thread ID (TID). The p.t combination identi-
fies the process and thread of interest. The thread of interest is the primary
thread affected by a command. This means that it is the primary focus for a
CLI command. For example, the dstep command always steps the thread
of interest, but it may optionally run the rest of the threads in the process
of interest and may step other processes in the group.

The CLI has two symbols with special meaning when specifying P/T sets:

g The less-than (<) character in place of the TID to indicate the lowest num-
ber worker thread in the process. If, however, the arena explicitly names a
thread group, < means the lowest numbered member of the thread
group. This symbol lets TotalView select the first user thread, which may
not be thread 1; for example, the first and only user thread may be
thread number 3 on Compaq systems.

g A dot (.) indicates the current set. While this is seldom needed interac-
tively, it can be useful in scripts.
Version 5.0 Command Line Interface Guide 41

3
Groups, Processes, and Threads

Setting Process and Thread Focus
Process and Thread Widths
You can enter a P/T set in two ways. If you are not manipulating groups, the
format is:

[width_letter][PID][.TID]

NOTE The next section extends this format to include groups.

For example, p2.3 indicates process 2, thread 3.

While the syntax seems to indicate that you do not need to enter any ele-
ment, the CLI requires that, at a minimum, you enter one of the three com-
ponents. Because the CLI has an extensive set of defaults, it will try to fill in
what you omit. The only requirement is that when you use more than one
element, you use it in the order shown in this representation.

The width_letter indicates which processes and threads are part of this arena
specifier. These letters are:

t Thread width

A command’s target is the indicated thread.

p Process width

A command’s target is the process containing the thread of in-
terest.

g Group width

A command’s target is the group containing the process of inter-
est.

a All processes

A command’s target is all threads in the group of interest that
are in the process of interest.

d Default width

A command’s target depends on the default for each command.
This is also the width to which the default focus is set. For exam-
ple, the dstep command defaults to process width (run the pro-
cess while stepping one thread), and the dwhere command
defaults to thread width (backtrace just one thread). Default
widths are listed in “CLI Command Default Arena Widths” on
page 277.
42 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Process and Thread Focus
These widths must be entered as lowercase letters.

The following figure illustrates the relationship of these specifiers:

NOTE Notice that the “g” specifier indicates control and share groups.

You can visualize this relationship as a triangle with its base on the top.
This indicates that the arena focuses on a greater number of entities as you
move from thread level at the bottom to “all” level at the top.

As mentioned previously, the thread of interest specifies a particular target
thread, while the width specifies how many threads surrounding the thread
of interest are affected. For example, the dstep command always requires a
thread of interest, but entering this command can:

g Step just the thread of interest during the step operation (single-thread
single-step).

g Step the thread of interest and step all threads in the process containing
the thread of interest (process-level single-step).

g Step all processes in the group that have threads at the same PC (pro-
gram counter) as the thread of interest (group-level single-step).

This list doesn’t indicate what happens to other threads in your program
when the CLI steps your thread. For more information, see “Stepping” on
page 59.

FIGURE 22: Width Specifiers

All

Control Group

Share Group

Process

Thread

a

g

p

g

t

Version 5.0 Command Line Interface Guide 43

3
Groups, Processes, and Threads

Setting Group Focus
To save a P/T set definition for later use, assign the specifiers to a Tcl vari-
able. For example:

set myset { g2.3 t3.1 }
dfocus $myset dgo

The thread of interest can also be modified by a width specifier. As the
dfocus command returns its focus set, you can save this value for later use.
For example:

set save_set [dfocus]

Examples

Here are some example specifiers:

d1.< Use the default set for each command, focusing on the first user
thread in process 1. The “<: sets the TID to the first user thread.

g2.3 Select process 2, thread 3 and set the width to “group”.

t1.7 Commands act only on thread 7 of process 1.

You can leave out parts of the P/T set if what you enter is unambiguous. A
missing width or PID is filled in from the current focus. A missing TID is
always assumed to be <. For more information, see “Incomplete Arena
Specifiers” on page 57.

Setting Group Focus

When you start a multiprocess program, the CLI adds each process to a
control group as the process starts. TotalView decides which group it
should place the process based on the system call—fork() or execve()—
that created or changed the processes.

TotalView has two kinds of groups: process groups and thread groups. Pro-
cess groups only contain processes. Thread groups only contain threads,
but threads in a thread group can come from any process.

There are two different types of process groups:

g Control Group

Contains the parent process and all related processes. A control group
includes children that were forked (processes that share the same
44 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Group Focus
source code as the parent) and children that were forked but which sub-
sequently called execve().

Assigning a new value to the CGROUP(dpid) variable for a process
changes that processes control group. In addition, the dgroups –add
command lets you add members to a group.

g Share Group

Contains all members of a control group that share the same executable
image. (Note, however, that dynamically loaded libraries may vary
between share group members.)

TotalView automatically places processes in share groups based on their
control group and their executable image.

NOTE You cannot change a share group’s members.

In addition, there are also two types of thread groups:

g Workers Group

Contains all worker threads from all processes in the control group. By
default, it contains all threads except the kernel-level manager threads
that can be identified. TotalView does not let you delete a workers group.

g Lockstep Group

Contains every stopped thread in a share group that has the same PC.
There is one lockstep group for every thread. For example, suppose two
threads are stopped at the same PC. TotalView will create two lockstep
groups. While each lockstep group has the same two members, they dif-
fer in that each has a different thread of interest.

The group ID’s value for a lockstep group differs from the ID of other
groups. Rather than an automatically allocated integer ID, the lockstep
group ID has the form pid.tid, where pid.tid identifies the thread with
which it is associated. For example, the lockstep group for thread 2 in
process 1 is 1.2.

In general, if you are debugging a multiprocess program, the control group
and share group differ only when the program has children that are forked
with a call to execve().
Version 5.0 Command Line Interface Guide 45

3
Groups, Processes, and Threads

Setting Group Focus
Specifying Groups in P/T Sets

The arena syntax that has so far been presented does not let you change
the focus to a different group. This section shows how to add group speci-
fiers when setting a focus.

If you do not include a group specifier, the default is the control group. The
CLI only displays a target group in the focus string if you set it to some-
thing other than the default value.

NOTE Target group specifiers are most often used with the single-step commands
as they give these commands more control over what is being stepped.

Here is how you add groups to the way you specify arenas:

[width_letter][group_indicator][PID][.PID]

This format adds the group_indicator to the previously discussed syntax.
There are actually several different ways for specifying a group.

g You can name one of TotalView’s predefined sets. These sets are identi-
fied by letters. For example, the following command sets the focus to
the workers group:

dfocus W

g You can identify a group by its number. For example, here is how you set
the focus to group 3:
dfocus 3/

Notice the trailing slash. This slash lets the CLI know that you are speci-
fying a group number instead of a PID. In contrast, here is an example
that names process 3 within group 3:

dfocus 3/3

g As you can also create named sets, you must surround these set names
with slashes. For example, here is how you would use the my_group set
of threads within process 3:

dfocus p/my_group/3

In the formal description of this syntax, everything appears to be optional.
While no single element is required, you must enter at least one element.
TotalView will determine other values based on the current focus. When
you specify a group, you can use either a group_letter, a group_number, or a
group_name.
46 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Group Focus
The group_number is a value that TotalView assigns to the group.

The slash character is optional if you are using a group_letter. However, you
must use it as a separator when entering a numeric group ID and a pid.tid
pair. For example, the following entry indicates process 2 in group 3:

p3/2

If you have created your own group, you need to place the name of this
group within slash characters. For example, here is how you would indicate
the set of threads within process 2 that are also within a named group:

p/my_group/2

The group_letter can be:

C Control group

All processes in the control group.

D Default control group

All processes in the control group. The only difference between
this specifier and the C specifier is that D tells the CLI that it
should not display a group letter within the CLI prompt.

S Share group

The set of processes in the control group that have the same ex-
ecutable as the arena’s thread of interest.

W Workers group

The set of all worker threads in the control group.

L Lockstep group

A set containing all threads in the share group that have the
same PC as the arena’s thread of interest. If these threads are
stepped as a group, they will proceed in lockstep.

The group letter is always in uppercase.

On some systems, TotalView cannot distinguish manager threads from user
threads, so manager threads might be included by mistake. This means
that you may need to remove these manager threads from workers groups
by using the dgroups –remove or dworker commands.
Version 5.0 Command Line Interface Guide 47

3
Groups, Processes, and Threads

Setting Group Focus
Specifier Combinations
The following table indicates what specifier combinations mean for the
CLI’s stepping commands:

NOTE Stepping commands behave differently if the group being stepped is a pro-
cess group or a thread group. For example, “aC” and “aS” perform the same action
while “aL” is different.

Here are a few examples:

TABLE 2: Specifier Combinations

Specifier Meaning
aC Specifies all threads.
aS Specifies all threads.
aW Specifies all threads in all workers groups.
aL Specifies all threads.

Every thread is a member of a control group and a member of
a share group and a member of a lockstep group. Conse-
quently, three of these definitions mean “all threads”.

gC Specifies all threads in the thread of interest’s control group.
gS Specifies all threads in the thread of interest’s share group.
gW Specifies all worker threads in the control group containing the

thread of interest.
gL Specifies all threads in the same share group within the pro-

cess containing the thread of interest that have the same PC.
pC Specifies all threads in the control group of the process of

interest. This is the same as gC.
pS Specifies all threads in the process that participate in the

same share group as the thread of interest.
pW Specifies all worker threads in the process of interest.
pL Specifies all threads in the process of interest whose PC is the

same as the thread of interest.
tC These four combinations, while syntactically correct, are

meaningless. The t specifier overrides the group specifier. So,
for example, tW and t both name the current thread.

tS
tW
tL
48 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Group Focus
pW3 All worker threads in process 3.

pW3.< All worker threads in process 3. Notice that the focus
of this specifier is the same as the previous example’s.

gW3 All worker threads in the control group containing
process 3. Notice the difference between this and
pW3, which restricts the focus to one of the pro-
cesses in the control group.

gL3.2 All threads in the same share group as process 3 that
are executing at the same PC as thread 2 in process 3.
The reason this is a share group and not a control
group is that different share group can only reside
within one control group.

/3 Specifies processes and threads in process 3. As the
arena width, process of interest, and thread of inter-
est are inherited from the existing P/T set, the exact
meaning of this specifier depends on the previous
context.

While the “/” is unnecessary because no group is indi-
cated, it is syntactically correct.

g3.2/3 The 3.2 group ID is the name of the lockstep group for
thread 3.2. This group includes all threads in process
3’s share group that are executing at the same PC as
thread 2.

p3/3 Sets the process to process 3. The group of interest is
set to group 3. If group 3 is a process group, most
commands ignore the group setting. If group 3 is a
thread group, most commands act upon all threads in
process 3 that are also in group 3.

Setting the process with an explicit group should be
done with care as the combination may not be what
you expect given that commands, depending on their
scope, must look at the thread of interest, process of
interest, and group of interest.

NOTE Specifying thread width with an explicit group ID probably does not mean
much.
Version 5.0 Command Line Interface Guide 49

3
Groups, Processes, and Threads

Setting Group Focus
In the following examples, the first argument to the dfocus command
defines a temporary P/T set upon which the CLI command (the last term)
will operate. The dstatus command lists information about processes and
threads.

NOTE The examples assume that the global focus was “d1.<“ initially.

dfocus g dstatus
Displays the status of all threads in the control group.

dfocus gW dstatus
Displays the status of all worker threads in the control
group.

dfocus p dstatus
Displays the status of all worker threads in the current
focus process. The width here, as in the previous ex-
ample, is process and the (default) group is the con-
trol group; intersecting this width and the default
group creates a focus that is also the same as the pre-
vious example.

dfocus pW dstatus
Displays the status of all worker threads in the current
focus process. The width is process level and the tar-
get is the workers group.

The following example shows how the prompt changes as you change the
focus. Notice how the prompt changes when using the C and the D group
specifiers.

d1.<> f C
dC1.<
dC1.<> f D
d1.<
d1.<>

All Does Not Always Mean All

When you use one of the stepping commands, TotalView determines the
scope of what runs and what stops by looking at the thread of interest.
50 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Group Focus
This section looks at the differences in behavior when the a (all) arena is
used. Here is what runs when you use this arena:

Here is what some combinations mean:

f aC dgo Runs everything. If you are using the g command, ev-
erything after the a is ignored: a/aPizza/17.2, ac, aS,
and aL do the same thing. TotalView runs everything.

f aC duntil While everything runs, TotalView must wait until some-
thing reaches a goal. It may not be obvious what this
thing is. Since C is a process group, all processes run
until at least one thread in every participating process
has arrived at a goal.

Since this goal must reside within the current share
group, the command completes as soon as all pro-
cesses in the thread of interest’s share group have at
least one thread at the goal.

Notice that the thread of interest determines the goal.
If there are other control groups, they do not partici-
pate in the goal.

f aS duntil This command performs identically to f aC until be-
cause, as was just mentioned, the goal for f aC until
and f aS until are the same and the processes that are
in this scope are identical.

Notice that there could be more than one share group
within a control group. However, these other share
groups do not participate in the goal.

TABLE 3: a (all) Specifier Combinations

Specifier Meaning
aC Specifies all threads.
aS Specifies all threads.
aW Specifies all threads in all workers groups.
aL Specifies all threads.

Every thread is a member of a control group and a member of
a share group and a member of a lockstep group. Conse-
quently, three of these definitions mean “all threads”.
Version 5.0 Command Line Interface Guide 51

3
Groups, Processes, and Threads

Setting Group Focus
f aL duntil While everything will run, it is again not clear what
should occur. L is a thread group, so you might expect
that the duntil command will wait until all participat-
ing threads arrive at the goal. TotalView defines this
set of threads as just those thread in the TOI’s lock-
step group. While there are other lockstep groups,
these lockstep groups do not participate in the goal.

f aW duntil While everything will run, TotalView will wait until all
members of the thread of interest’s workers group ar-
rive at the goal.

There are two fundamental distinctions between process group and thread
group behavior:

g When focus is on a process group, TotalView waits until just one thread
from each participating process arrives at the goal. The other threads
just run and TotalView does not care where they end up.

When focus is on a thread group, every participating thread must arrive
at the goal.

g When the focus is on a process group, TotalView steps a thread over the
goal breakpoint and continues the process if it isn’t the “right thread”.

When the focus is on a thread group, TotalView holds a thread even if it
isn’t the right thread. It also continues the rest of the process. This
behavior only exists on systems that allow TotalView to have asynchro-
nous thread control.

With this in mind, f aL dstep does not step all threads. Instead, it steps
only the threads in the TOI’s lockstep group. All other threads run freely
until the stepping process for these lockstep threads is occurring.

Setting Groups

This section presents a series of examples that set and create groups.
Many of the examples use CLI commands that have not yet been intro-
duced. You will probably need to refer to the command’s definition in
Chapter 6 before you can appreciate what is occurring.

Here are some methods for indicating that thread 3 in process 2 is a worker
thread.
52 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Group Focus
dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker
threads associated with process 2 to the WGROUP
variable. (Assigning a nonzero value to WGROUP indi-
cates that this is a worker group.)

dset WGROUP(2.3) 1
A simpler way of doing the same thing as the previous
example.

dfocus 2.3 dworker 1
Adds the groups in the indicated focus to a workers
group.

dset CGROUP(2) $CGROUP(1)
dgroups -add -g $CGROUP(1) 2
dfocus 1 dgroups -add 2

These three commands insert process 2 into the same
control group as process 1.

dgroups -add -g $WGROUP(2) 2.3
Adds process 2, thread 3 to the workers group associ-
ated with process 2.

dfocus tW2.3 dgroups -add
A simpler way of doing the same thing as the previous
example.

Here are some additional examples:

dfocus g1 dgroups -add -new thread
Creates a new thread group that contains all the
threads in all the processes in the control group asso-
ciated with process 1.

set mygroup [dgroups -add -new thread $GROUP($SGROUP(2))]
dgroups -remove -g $mygroup 2.3
dfocus g$mygroup/2 dgo

Defines a new group containing all the threads in pro-
cess 2’s share group except for thread 2.3 and then
continues that set of threads. The first command cre-
ates a new group containing all the threads from the
share group, the second removes thread 2.3, and the
third runs the remaining threads.
Version 5.0 Command Line Interface Guide 53

3
Groups, Processes, and Threads

Setting Group Focus
An Extended Example

The g specifier can sometimes be confusing when is coupled with a group.
In many cases, the reason that you use g is to force the group when the
current default focus indicates another kind of focus. Stated in another
way, isn’t something like gL redundant?

The following example will clarify why and when you use the g specifier. The
first step is to set a breakpoint in a multithreaded OMP program and exe-
cute the program until it hits the breakpoint:

d1.<> dbreak 35
Loaded OpenMP support library libguidedb_3_8.so :

KAP/Pro Toolset 3.8
1
d1.<> dcont
Thread 1.1 has appeared
Created process 1/37258, named "tx_omp_guide_llnl1"
Thread 1.1 has exited
Thread 1.1 has appeared
Thread 1.2 has appeared
Thread 1.3 has appeared
Thread 1.1 hit breakpoint 1 at line 35 in ".breakpoint_here"

The default focus is d1.<, which means that the CLI is at its default width,
The process of interest is 1, and the thread of interest is the lowest num-
bered nonmanager thread. Because the default width for the dstatus com-
mand is “process”, entering dstatus tells the CLI to display the status of all
processes. Notice that typing dfocus p st produces the same output:

d1.<> dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Stopped PC=0xd042c944

d1.<> dfocus p dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Stopped PC=0xd042c944
54 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Group Focus
Here’s what the CLI displays when you ask for the status of the lockstep
group. (The rest of this example will use the f abbreviation for dfocus.)

d1.<> f L dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

This command tells the CLI to get the status of the threads in thread 1.1's
(the thread of interest) lockstep group. The f L command modifier narrows
the set so that the display only includes the threads in the process that are
at the same PC as the thread of interest.

NOTE By default, the dstatus command displays information at “process” width.
This means that you do not need to type “f pL dstatus”.

The next command runs thread 1.3 to the same line as thread 1.1. This is
immediately followed by a command that displays the status of all the
threads in the process:

d1.<> f t1.3 duntil 35
35@> write(*,*)"i= ",i,

"thread= ",omp_get_thread_num()
d1.<> f p dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Breakpoint PC=0x1000acd0,

[./tx_omp_llnl1.f#35]

As expected, the CLI has added a thread to the lockstep group:

d1.<> f L dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

The next set of commands first narrows the width of the default focus to
thread width—notice that the prompt changes—then displays the con-
tents of the lockstep group.
Version 5.0 Command Line Interface Guide 55

3
Groups, Processes, and Threads

Setting Group Focus
d1.<> f t
t1.<> f L dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

This is the hard step. While the lockstep group of the thread of interest has
two threads, the current focus has only thread 1, and that thread is, of
course, part of the lockstep group. Consequently, the lockstep group in the
current focus is just the one thread.

If you ask for a wider width (p or g) with L, the CLI displays more threads
from the lockstep group of thread 1.1.

t1.<> f pL dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

t1.<> f gL dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

t1.<>

NOTE If the thread of interest is 1.1, “L” refers to group number 1.1, which is the
lockstep group of thread 1.1.

Because this example only contains one process, the pL and gL modifiers
produce the same result when used with dstatus. If, however, the program
had additional processes in the group, you could only see them by using a
gL modifier.

In this example, the focus indicated by the prompt—this focus is called the
outer focus—controls the display. Notice what happens when dfocus com-
mands are strung together:

t1.<> f d
d1.<
d1.<> f tL dstatus
56 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Setting Group Focus
1: 37258 Breakpoint [tx_omp_guide_llnl1]
1.1: 37258.1 Breakpoint PC=0x1000acd0,

[./tx_omp_llnl1.f#35]
d1.<> f tL f p dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<> f tL f p f D dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Breakpoint PC=0x1000acd0,

[./tx_omp_llnl1.f#35]
d1.<> f tL f p f D f L dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<>

Stringing multiple focuses together may not produce the most readable
result, and this example illustrates how one dfocus command can modify
what another sees and will act upon. The ultimate result is an arena upon
which a command will act. In these examples, the dfocus command is tell-
ing the dstatus command what it should be displaying.

Incomplete Arena Specifiers

In general, you do not need to completely specify an arena. Missing com-
ponents are assigned default values or are filled in from the current focus.
The only requirement is that the meaning of each part of the specifier can-
not be ambiguous. Here is how the CLI fills in missing pieces:

g If you do not use a width, the CLI uses the width from the current focus.

g If you do not use a PID, the CLI uses the PID from the current focus.
Version 5.0 Command Line Interface Guide 57

3
Groups, Processes, and Threads

Setting Group Focus
g If you set the focus to a list, there is no longer a default arena. This
means that you must explicitly name a width and a PID. You can, how-
ever, omit the TID. (If you omit the TID, the CLI defaults to <.)

You can type a PID without typing a TID. If you omit the TID, the CLI uses
its default of “<”, where “<” indicates the lowest numbered worker
thread in the process. If, however, the arena explicitly names a thread
group, < means the lowest numbered member of the thread group.

The CLI does not use the TID from the current focus, since the TID is a
process-relative value.

g A dot typed before or after the number lets the CLI know if you are spec-
ifying a process or a thread. For example, “1.” is clearly a PID, while “.7”
is clearly a TID.

If you type a number without typing a period, the CLI interprets the num-
ber as being a PID.

g If the width is t, you can omit the dot. For instance, t7 refers to thread 7.

g If you enter a width and do not specify a PID or TID, the CLI uses the PID
and TID from the current focus.

If you use a letter as a group specifier, the CLI obtains the rest of the
arena specifier from the default focus.

g You can use a group ID or tag followed by a “/”. The CLI obtains the rest
of the arena from the default focus.

Lists with Inconsistent Widths

The CLI lets you create lists containing more than one width specifier.
While this can be very useful, it can be confusing. Consider the following:

{ p2 t7 g3.4 }

This list being defined is quite explicit: all of process 2, thread 7, and all
processes in the same group as process 3, thread 4. However, how should
the CLI use this set of processes, groups, and threads?

In most cases, the CLI does what you would expect it to do: a command it-
erates over the list and acts on each arena. If the CLI cannot interpret an
inconsistent focus, it prints an error message.

There are commands that act differently. These commands use each
arena’s width to determine the number of threads on which it will act. This
58 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Stepping
is exactly what the dgo command does. In contrast, the dwhere command
creates a call graph for process-level arenas, and the dstep command runs
all threads in the arena while stepping the thread of interest. It may wait for
threads in multiple processes for group-level arenas.

Stepping

The action that the CLI will perform when stepping assembler instructions
or source statements depends on whether you have specified thread, pro-
cess, or group width.

NOTE If you do not explicitly name a group, the CLI steps the control group.

The following sections describe what happens at each width. In all cases, if
a thread hits an action point other than the goal breakpoint during a step-
ping operation, the operation ends.

Thread
TotalView steps the thread of interest (TOI). Stepping a thread is not the
same as stepping a thread’s process because a process can have more
than one thread.

NOTE Thread stepping is not implemented on Sun platforms. On SGI platforms,
thread stepping is not available with pthread programs. If, however, your program’s
parallelism is based on SGI’s sprocs, thread stepping is available.

Stepping at thread width (t) tells the CLI that it should just run that thread.
In contrast, process width (p) tells the CLI that it should run all threads in
the process that are allowed to run while the thread of interest is stepped.

TotalView also allows all manager threads to run freely while the stepping
action is occurring.

Process
The behavior (which is the default) depends on whether the group of inter-
est (GOI) is set to a process group or a thread group. If the GOI is a:
Version 5.0 Command Line Interface Guide 59

3
Groups, Processes, and Threads

Stepping
g Process group, TotalView runs all threads in the process, and execution
continues until the thread of interest arrives at its goal location, which
can be the next statement, the next instruction, and so on. Only when
the TOI reaches the goal are the other threads in the process stopped.

g Thread group, the behavior differs. All threads in the GOI, and all manager
threads are allowed to run. As each member of the GOI arrives at the
goal, it is stopped; the rest of the threads are allowed to continue. The
command finishes when all members of the GOI arrive at the goal. At
that point, TotalView stops the whole process.

Group
The behavior again depends on whether the GOI is a process group or a
thread group. If the GOI is a:

g Process group, TotalView examines that group and identifies each process
in it which has a thread stopped at the same location as the thread of in-
terest (a matching process). TotalView runs all processes in the control
group associated with the process of interest. Each time a thread arrives
at the goal, the process containing that thread is stopped. The com-
mand finishes after TotalView stops all “matching” processes. At that
time, all members of the control group will also be stopped.

g Thread group, TotalView again runs all processes in the control group.
However, as each thread arrives at the goal, TotalView just stops that
thread; the rest of the threads in the process containing it are allowed to
continue. The command finishes when all threads in the group of inter-
est have arrived at the goal. (TotalView does not wait for threads that are
not in the same share group as the thread of interest since they are exe-
cuting different code and can never arrive at the goal.) When the com-
mand finishes, TotalView again stops all process in the control group.

Using duntil
The duntil command differs from other step commands when you apply it
to a process group. (The duntil command tells TotalView to execute pro-
gram statements until a selected statement is reached.) When applied to a
process group, it identifies all processes in the group already having a
thread stopped at the goal. These are the matching processes. It then runs
only the nonmatching processes. Whenever a thread arrives at the goal,
60 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

Stepping
TotalView stops its process. The command finishes when all members of
the group are stopped. This lets you sync up all the processes in a group in
preparation for group-stepping them.

In all cases, if a process does not exist before a command executes,
TotalView creates it before executing the command.

How do I ...

Here are some of the operations that can occur when you are using the
CLI’s stepping commands:

g Step a single thread

While the thread runs, no other thread runs (except kernel manager
threads).

Example: dfocus t dstep

g Step a single thread while the process runs

A single thread runs into or through a critical region.

Example: dfocus p dstep

g Step one thread in each process in the group

While one thread in each process in the share group runs to a goal, the
rest of the threads run freely.

Example: dfocus g dstep

g Step all worker threads in the process while nonworker threads
run

Runs worker threads through a parallel region in lockstep.

Example: dfocus pW dstep

g Step all workers in the share group

All processes in the share group participate. The nonworker threads run.

Example: dfocus gW dstep

g Step all threads that are at the same PC as the thread of interest
The CLI selects threads from one process or from the entire share group.
This differs from the previous two bullets in that the CLI uses the set of
threads that are in lockstep with the thread of interest rather than using
the workers group.

Example: dfocus L dstep
Version 5.0 Command Line Interface Guide 61

3
Groups, Processes, and Threads

“Piling Up” vs. “Running Through”
In the following examples, the default focus is set to d1.<.

dstep Steps the thread of interest while running all other
threads in the process.

dfocus W dnext Runs the thread of interest and all other worker
threads in the process to the next statement. Other
threads in the process run freely.

dfocus W duntil 37
Runs all worker threads in the process to line 37.

dfocus L dnext Runs the thread of interest and all other stopped
threads at the same PC to the next statement. Other
threads in the process run freely. Threads that en-
counter a temporary breakpoint in the course of hop-
ping to the next statement usually join the lockstep
group.

dfocus gW duntil 37
Runs all worker threads in the share group to line 37.
Other threads in the control group run freely.

UNW 37 Performs the same action as the previous command:
runs all worker threads in the share group to line 37.
This example uses the predefined UNW alias instead
of the individual commands. That is, UNW is an alias
for dfocus gW duntil.

SL Finds all threads in the share group that are at the
same PC as the thread of interest and steps them all
one statement. This command is the built-in alias for
dfocus gL dstep.

sl Finds all threads in the current process that are at the
same PC as the thread of interest, and steps them all
one statement. This command is the built-in alias for
dfocus L dstep.

“Piling Up” vs. “Running Through”

If you use a step command when the focus is set to the lockstep group, the
CLI runs all threads at the same PC as the thread of interest to the same
goal. In contrast, when you enter a step command with its focus set to a
62 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

P/T Set Expressions
nonlockstep thread group, the CLI runs all threads in the indicated group
to the same goal as the thread of interest. The set of threads being run to
the goal is called the active set. In all cases, TotalView selects the goal based
on the PC of the TOI. The step command tells TotalView that it must wait
for all threads in the active set to reach the goal.

While the active set is running to the goal, all other threads in the process
(or group) run freely.

If a thread that is not in the active set reaches the goal breakpoint, the CLI
continues that process again until all active threads reach the goal. Before
continuing the process, the CLI can either step the thread over the goal
breakpoint, which allows it to run through, or it can hold it, thus causing
threads to pile up at the goal.

If a single thread is being run into a critical region, threads that are not in
the active set run freely. Otherwise, the thread of interest may not be able
to make any progress.

If a lockstep group is running, threads that are not in the active set pile up
at the goal when the CLI steps the lockstep group.

NOTE Threads pile up when a thread group is specified, and they “run through”
when a process group is specified.

“Piling up” can only occur for systems in which the CLI can control threads
asynchronous.

P/T Set Expressions

At times, you do not want all of one kind of group or process to be in the
focus set. The CLI lets you use the following three operators to manage
your P/T sets:

| Creates a union; that is, all members of the sets.

- Creates a difference; that is, all members of the first set that are
not also members of a second set.

& Creates an intersection; that is, all members of the first set that are
also members of the second set.
Version 5.0 Command Line Interface Guide 63

3
Groups, Processes, and Threads

P/T Set Expressions
For example, here is how you would create a union of two P/T sets:

p3 | L2

A set operator only operates upon two sets. You can, however, apply these
operations repeatedly. For example:

p2 | p3 & L2

This statement creates a union between p2 and p3, and then creates an
intersection between the union and L2.

The CLI associates sets from left to right. You can change this order by
using parentheses. For example:

p2 | (p3 & pL2)

Typically, these three operators are used with the following P/T set func-
tions:

breakpoint() Returns a list of all threads that are stopped at a
breakpoint.

error() Returns a list of all threads stopped due to an error.

existent() Returns a list of all threads.

held() Returns a list of all threads that are held.

nonexistent() Returns a list of all processes that have exited or
which, while loaded, have not yet been created.

running() Returns a list of all running threads.

stopped() Returns a list of all stopped threads.

unheld() Returns a list of all threads that are not held.

watchpoint() Returns a list of all threads that are stopped at a
watchpoint.

The argument that all of these operators use is a P/T set. You specify this
set in the same that a P/T set is specified for the dfocus command. For
example, watchpoint(L) returns all threads in the current lockstep group.

The following examples should clarify how these operators and functions
are used. The P/T set that is the argument to these operators is a (all).
64 Command Line Interface Guide Version 5.0

Groups, Processes, and Threads

P/T Set Expressions
f {breakpoint(a) | watchpoint(a)} dstatus
Shows all threads that stopped at breakpoints and
watchpoints. The a argument is the standard P/T set
indicator for “all”.

f { stopped(a) - breakpoint(a) } dstatus
Shows all stopped threads that are not stopped at
breakpoints.

f { g.3 - p6 } duntil 577
Runs thread 3 along with all other processes in the
group to line 577. However, do not run anything in
process 6.

f { ($PTSET) & p123 }
Uses just process 123 within the current P/T set.
Version 5.0 Command Line Interface Guide 65

3
Groups, Processes, and Threads

P/T Set Expressions
66 Command Line Interface Guide Version 5.0

Version 5.0
Chapter 4
Using the CLI
The two components of the Command Line Interface (CLI) are the Tcl-based pro-
gramming environment and the commands added to the Tcl interpreter that
allow you to debug your program. This chapter looks at how these components
interact and describes how you specify processes, groups, and threads.

This chapter tends to emphasize interactive use of the CLI rather than using the
CLI as a programming language because many of the concepts that will be dis-
cussed are easier to understand in an interactive framework. However, every-
thing in this chapter can be used in both environments.

How a Debugger Operates
The CLI and TotalView debuggers affect the program but are not part of the
program's process. That is, TotalView and the CLI run in separate pro-
cesses, and their semantics are separate from the program’s semantics.

A CLI interaction has two kinds of input: the executables that make up the
program and the Tcl and CLI commands that you type. You will prepare the
executable for debugging by compiling it with the –g, which tells the com-
piler to add information that lets the CLI display high-level output to the
user, expressed in terms of the procedures and variables used in the source
code. This option also allows the CLI to access components of the pro-
gram (such as source files), eliminating the need for some assistance from
the user.

If you do not use –g option, TotalView only displays the assembler code
generated by the compiler.
Command Line Interface Guide 67

4
Using the CLI

How a Debugger Operates
Tcl and the CLI

The TotalView CLI is built within version 8.0 of Tcl, which means that
TotalView’s CLI commands are built into Tcl. The CLI is not a library of com-
mands that you can bring into other implementations of Tcl. Because the
Tcl you are running is the standard 8.0 version, the TotalView CLI supports
all libraries and operations that run using version 8.0 of Tcl.

Integrating CLI commands into Tcl makes them intrinsic Tcl commands.
This means that you can enter and execute CLI commands in exactly the
same way as you enter and execute built-in Tcl functions such as file or
array. It also means that you can embed Tcl primitives and functions within
CLI commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl
commands to manipulate that list, and then have a CLI command operate
on the elements of this list. Or, you create a Tcl function that dynamically
builds the arguments that a process will use when it begins executing.

Because the CLI is an integral part of TotalView’s version of Tcl, there are
no differences between using a CLI command and using a Tcl command.
Furthermore, all CLI operations can be manipulated by Tcl.

The CLI and TotalView

The following figure illustrates the relationship between the CLI, the
TotalView GUI, the TotalView core, and your program:

FIGURE 23: The CLI and TotalView

CLI GUI

Core

Process 1
Thread 1

Thread 2

Process 2
Thread 1

Thread 2

Program being debugged

TotalView
Tcl
68 Command Line Interface Guide Version 5.0

Using the CLI

How a Debugger Operates
The CLI and the GUI are interfaces that communicate with the TotalView
core, which is the component that actually performs the debugging work.
In this figure, the dotted arrow between the GUI and the CLI indicates that
you can invoke the CLI from the GUI. The reverse is not true: you cannot
invoke the GUI from the CLI.

In turn, the TotalView core communicates with the processes that make up
your program and receives information back from these processes, and
passes them back to the component that sent the request.

The CLI Interface

The way in which you interact with the CLI is by entering a CLI command.
Typically, the effect of executing a CLI command is one or more of the fol-
lowing:

g The CLI displays information about the program.

g A change takes place in the program’s state.

g A change takes place in the information that the CLI maintains about the
program.

The CLI signals that it has completed a command by displaying a prompt.

Although CLI commands are executed sequentially, commands executed
by your program may not be. For example, the CLI does not require that
your program be stopped when it prompts for and performs commands. It
only requires that the last CLI command be complete before it can begin
executing the next one. In many cases, the processes and threads being
debugged continue to execute while the CLI is performing commands.

Because actions are occurring constantly, state information displayed by
the CLI is usually mixed in with the commands that you type.

Entering Ctrl-C while a CLI command is executing interrupts that CLI com-
mand or executing Tcl macro. If the CLI is displaying its prompt, typing Ctrl-
C stops executing processes.
Version 5.0 Command Line Interface Guide 69

4
Using the CLI

Starting the CLI
Starting the CLI
You can start the CLI in two ways:

g You can start the CLI from within the TotalView window by selecting the
Tools > Command Line command within the Root and Process win-
dows. After selecting this command, TotalView opens a window into
which you can enter CLI commands.

g You can start the CLI directly from a shell prompt by typing totalviewcli.
(This assumes that the TotalView binary directory is in your path.)

Here is a snapshot of a CLI window that shows part of a program being de-
bugged:

If you have problems entering and editing commands, it could be because
you invoked the CLI from a shell or process that manipulates your stty set-
tings. You can eliminate these problems if you use the stty sane CLI com-
mand. (If the sane option is not available, you will have to change values
individually.)

If you start the CLI using the totalviewcli command, you can use all of the
command line options that you can use when starting TotalView. For more
information, see the TOTALVIEW USERS GUIDE.

FIGURE 24: CLI xterm Window
70 Command Line Interface Guide Version 5.0

Using the CLI

Starting the CLI
Initializing the Debugger

An initialization file contains commands that let you modify the TotalView
and CLI environments and add your own functions to this environment.
TotalView allows you to place information in more than one file. These files
can be located in your installation directory, your home directory, or the
directory from which you invoked TotalView. If it is present in one of these
places, TotalView reads and executes its contents.

Typically, .tvdrc files contain command, function, variable definitions, and
function calls that you want executed whenever you start a new debugging
session.

If you add the -s filename option to either the totalview or totalviewcli shell
commands, you can have TotalView execute the CLI commands contained
within filename. Your startup file executes after .tvdrc files execute.

The following figure shows the order in which initialization and startup files
execute:

The -s option lets you, for example, initialize the debugging state of your
program, run the program you are debugging until it reaches some point
where you are ready to begin debugging, and even lets you create a shell
command that starts the CLI.

FIGURE 25: Startup and Initialization Sequence

.preferences.tvd

.Xdefaults

global tvdinit.tvd

global .tvdrc

-s startup file

home .tvdrc

local .tvdrc

command options
Version 5.0 Command Line Interface Guide 71

4
Using the CLI

Starting the CLI
NOTE The .Xdefaults file, which is actually read by the server when you start X Win-
dows, is only used by the GUI. The CLI ignores it.

As part of the initialization process, TotalView exports two environment
variables into your enviroment: LM_LICENSE_FILE and either SHLIB_PATH
or LD_LIBRARY_PATH.

If you have saved a breakpoint file into the same subdirectory as your pro-
gram, TotalView automatically reads the information in this file when it
loads your program.

NOTE The format of a Release 5.0 breakpoint file differs from that used in earlier
releases. While Release 5 versions of TotalView can read breakpoint files created by
earlier versions, earlier versions cannot read a Release 5 breakpoint file.

You can also invoke scripts by naming them in the TV::process_load_-
callbacks list. For information, see “Initializing TotalView After Loading an
Image” on page 99.

Start-up Example

Here is a very small CLI script:

#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT { 0 4 -wp}
dstep
catch { make_actions fork_loop.cxx } msg
puts $msg

This script begins by loading and interpreting the make_actions.tcl file,
which was described in Chapter 2. It then loads the fork_loop executable,
sets its default startup arguments, then steps one source-level statement.

If this were stored in a file named fork_loop.tvd, here is how you would tell
TotalView to start the CLI and execute this file:

totalviewcli -s fork_loop.tvd

Information on options and X resources can be found in the TOTALVIEW
USER’S GUIDE.
72 Command Line Interface Guide Version 5.0

Using the CLI

Starting the CLI
The following example shows how you would place a similar set of com-
mands in a file that you would invoke from the shell:

#!/bin/sh
Next line executed by shell, but ignored by Tcl because of: \

exec totalviewcli -s "$0" "$@"
#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

Notice that the only difference is the first few lines in the file. In the second
line, the continuation character is ignored by the shell. It is, however, pro-
cessed by Tcl. This means that the shell will execute the command while Tcl
will ignore it.

Starting Your Program

The CLI lets you start debugging operations in several ways. To execute
your program from within the CLI, enter a dload command followed by the
drun command. The following example uses the totalviewcli command to
start the CLI. This is followed by dload and drun commands. As this was
not the first time the file was run, breakpoints exist from a previous ses-
sion.

NOTE In this listing, the CLI prompt is “d1.<>”. The information preceding the “>”
symbol indicates the processes and threads upon which the current command acts.
The prompt is discussed in “Command and Prompt Formats” on page 81.

% totalviewcli
IRIX6 MIPS TotalView 5X.0.0-7
Copyright 1999-2000 by Etnus, LLC. ALL RIGHTS RESERVED.
Copyright 1999 by Etnus, Inc.
Copyright 1996-1998 by Dolphin Interconnect Solutions, Inc.
Copyright 1989-1996 by BBN Inc.

tcl_library is set to "/opt/totalview/lib"
Version 5.0 Command Line Interface Guide 73

4
Using the CLI

Starting the CLI
d1.<> dload arrays # load the “arrays” program
Mapping 430 bytes of ELF string data from 'arrays'...done
Digesting 42 ELF symbols from 'arrays'...done
Skimming 1825 bytes of DWARF '.debug_info' symbols from

'arrays'...done
Indexing 408 bytes of DWARF '.debug_frame' symbols from

'arrays'...done
...
Loading 1122 bytes of DWARF '.debug_info' information for

arrays.F...done
1
d1.<> dactions # show action points
2 action points for process 1:

1 addr=0x1000114c [arrays.F#53] Enabled
2 addr=0x10000f34 [arrays.F#29] Enabled

d1.<> drun # run “arrays” until first action point
Created process 1/10715, named "arrays"
Thread 1.1 has appeared
d1.<> Thread 1.1 hit breakpoint 2 at line 29 in

"check_fortran_arrays_"

This two-step operation of loading then running allows you to set action
points before execution begins. It also means that you can execute a pro-
gram more than once, keeping TotalView state settings (such as the loca-
tion of action points) in effect. At a later time, you can use the drerun
command to tell the CLI to restart program execution, perhaps sending it
new command-line arguments. In contrast, reentering the dload command
tells the CLI to reload the program into memory (for example, after editing
and recompiling the program). The dload command always creates new
processes.

The dkill command terminates one or more processes of a program started
by using dload, drun, or drerun. The following contrived example contin-
ues where the previous example left off:

d1.<> dkill # kill process
Process 1 has exited
d1.<> drun # runs “arrays” from beginning
Created process 1/10722, named "arrays"
Thread 1.1 has appeared
d1.<> Thread 1.1 hit breakpoint 2 at line 29 in
74 Command Line Interface Guide Version 5.0

Using the CLI

Starting the CLI
"check_fortran_arrays_"
dlist -e -n 3 #Shows lines about execution point
Loading 168 bytes of DWARF '.debug_info' information
for /comp2/mtibuild//targ64_m4/libftn/lseek64_.s...done
Loading 760 bytes of DWARF '.debug_info' information for

vtan.c...done
Loading 1864 bytes of DWARF '.debug_info' information for

ns_passwd.c...done
28 do 10 i = 1, 100
29@> master_array (i) = i * i * i
30 0 continue

d1.<> dwhat master_array # Show me information
Loading 901 bytes of DWARF '.debug_info' information for

main.c...done
In thread 1.1:
Name: master_array; Type: integer*4(100); Size: 400 bytes;

Addr: 0xffffffac90
Address class: auto_var (Local variable)Loading 188 bytes of
DWARF '.debug_info' information for

/xlv55/irix/lib/libc/libc_64_M4/csu/crt1tinit.s...done

d1.<> drun # Notice the error message
drun: Process 1 already exists. Kill it first, or use rerun.
d1.<> dkill # kill processes again
Process 1 has exited

d1.<> drun
Created process 1/10730, named "arrays"
Thread 1.1 has appeared
d1.<> Thread 1.1 hit breakpoint 2 at line 29 in
"check_fortran_arrays_"

Notice that messages from the CLI and TotalView are interleaved (some-
times inconveniently) throughout the interaction. The occurs because the
CLI prompt lets you know that the CLI is ready to accept another com-
mand. In contrast, the CLI displays messages about your program’s state
when something happens within the executing process. This means that
you are almost always going to have interactions like this.

NOTE You can minimize the amount of information that the CLI displays by setting
the VERBOSE state variable to ERROR. See “dset” on page 200 for more information.
Version 5.0 Command Line Interface Guide 75

4
Using the CLI

CLI Output
Because information is interleaved, you may not realize that the prompt
has appeared. It is always safe to use the Enter key to have the CLI redis-
play its prompt. If a prompt is not displayed after you press Enter, then you
know that the CLI is still executing.

CLI Output
A CLI command can either print its output to a window, or it can return the
output as a character string. If the CLI executes a command that returns a
string value, it also prints the returned string. Most of the time, you are not
concerned with the difference between printing and returning-and-printing.
Either way, information is displayed in your window. And, in both cases,
printed output is fed through a simple more processor. (This is discussed in
more detail in the next section.)

Here are two cases where it matters whether output is printed directly or
returned and then printed:

g When the Tcl interpreter executes a list of commands, only the informa-
tion returned from the last command is printed. Information returned by
other commands is not shown.

g You can only assign the output of a command to a variable if the com-
mand’s output is returned by the command. Output that is printed
directly cannot be assigned to a variable or otherwise manipulated
unless you save it by using the capture command.

For example, the dload command returns the ID of the process object that
was just created. The ID is normally printed—unless, of course, the dload
command appears in the middle of a list of commands. For example:

{ dload test_program ; dstatus }

In this case, the CLI does not display the ID of the loaded program since
dload was not the last command. On the other hand, you can easily assign
the ID of the new process to a variable:

set pid [dload test_program]

In contrast, you cannot assign the output of the help command to a vari-
able. For example, the following does not work:
76 Command Line Interface Guide Version 5.0

Using the CLI

Command Arguments
set htext [help]

This statement assigns an empty string to htext because help does not re-
turn text; it just prints information.

To capture the output of a command that prints its output, use the capture
command. For example, the following places the output of the help com-
mand into a variable:

set htext [capture help]

NOTE You can only capture the output from commands. You cannot capture the
informational messages displayed by the CLI that describe process state.

“more” Processing

When the CLI displays output, it sends data through a simple internal more-
like process. This process prevents data from scrolling off the screen
before it can be viewed. After you see the MORE prompt, you must press
Enter to continue with the next screen of data. If you type q (followed by a
Enter), any remaining buffered output is discarded.

You can control the number of lines displayed between prompts by setting
the LINES_PER_SCREEN state variable. (See dset for more information.)

Command Arguments
The default command arguments for a process are stored in the
ARGS(num) variable, where # is the CLI ID for the process. If the
ARGS(num) variable is not set for a process, the CLI uses the value stored
in the ARGS_DEFAULT variable. ARGS_DEFAULT is set if you had used the
–a option when starting the CLI or TotalView.

NOTE The –a option tells TotalView to pass the information that follows to the pro-
gram.

For example:

totalviewcli -a argument-1, argument-2, ...
Version 5.0 Command Line Interface Guide 77

4
Using the CLI

Symbols
To set (or clear) the default arguments for a process, you can use dset to
modify the ARGS() variables directly, or you can start the process with the
drun command. For example, here is how you can clear the default argu-
ment list for process 2:

dunset ARGS(2)

The next time process 2 is started, the CLI uses the arguments contained
within ARGS_DEFAULT.

You can also use the dunset command to clear the ARGS_DEFAULT vari-
able. For example:

dunset ARGS_DEFAULT

All commands (except drun) that create a process—including dgo, drerun,
dcont, dstep, and dnext—pass the default arguments to the new process.
The drun command differs in that it replaces the default arguments for the
process with the arguments that are passed to it.

Symbols
This section discusses how the CLI handles symbols and other names corre-
sponding to various entities within your program or within TotalView.

Namespaces

CLI interactive commands exist within the primary Tcl namespace (::). Many
TotalView state variables also reside in this namespace. However, the CLI
and TotalView place functions and variables that are not ordinarily
accessed in interactive sessions in other namespaces. These namespaces
are:

TV:: Contains commands and variables that are most of-
ten used in scripts; that is, they are seldom used in an
interactive debugging session.

TV::GUI:: Contains state variables that define and describe
properties of the user interface such as window place-
ment, color, and the like.
78 Command Line Interface Guide Version 5.0

Using the CLI

Symbols
If you discover other namespaces beginning with TV, you have found a
place containing internal functions and variables. These objects can (and
will) change and disappear. So, don’t use them. Also, do not create
namespaces that begin with TV as you could cause problems by interfering
with built-in functions and variables.

The CLI’s dset command lets you set the value of these variables. You can
ask the CLI to display a list of these variables by specifying the namespace.
For example:

dset TV::

Symbol Names and Scope

Many commands refer to one or more program objects by using symbol
names as arguments. In addition, some commands take expressions as ar-
guments, where the expression can contain symbol names representing
program variables.

NOTE Because the CLI is built on top of TotalView, the way in which the CLI inter-
prets symbols is the way that TotalView interprets them.

TotalView learns about a program's symbols and their relationships by
reading the debugging information that was generated when the program
was compiled. This information includes a mapping from symbol names to
descriptions of objects, providing information about a symbol’s use (for
example, a function), where it is located in memory after the executable is
loaded, and associated features (for example, number and data types of a
function’s arguments). While TotalView smooths over many differences, the
information provided by compiler manufacturers is not uniform, and differ-
ences exist between the kinds of information provided by Fortran, C, and
C++ compilers.

In all cases, scope is central to the way TotalView interprets and accesses
symbols. (A scope defines what part or how much of a program knows about
about a symbol. For example, a variable that is defined with a subroutine is
scoped to all statements within the subroutine. It is not scoped outside of
the subroutine.) A program consists of one or more scopes that are estab-
Version 5.0 Command Line Interface Guide 79

4
Using the CLI

Symbols
lished by the program’s structure. Typically, some scopes are nested within
others. Every statement in a program is associated with a particular scope,
and indirectly with the other scopes containing that scope.

Whenever a CLI command contains a symbol name, TotalView consults the
program’s symbol table to discover what object it refers to—this process is
known as symbol lookup. As programming languages do not require that a
symbol names be unique, determining which symbol it should use can be
complicated. A symbol lookup is performed with respect to a particular
context, expressed in terms of a single thread of execution. Each context
uniquely identifies the scope to which a symbol name refers.

Qualifying Symbol Names

The syntax for qualifying a symbol with a scope closely resembles that for
specifying a source location. The scopes within a program form a tree, with
the outermost scope as the root. At the next level are executable files and
dynamic libraries; further down are compilation units (source files), proce-
dures, and other scoping units (for example, blocks) supported by the pro-
gramming language. Qualifying a symbol is equivalent to specifying which
scope it is in, or describing the path to a node in the tree. This is similar to
describing the path to a file in a tree-structured file system.

A symbol is fully qualified in terms of its scope when all levels of the tree are
included:

[#executable-or-lib#][file#][procedure-or-line#]symbol

In this definition, the pound sign (#) is a separator character.

TotalView interprets the components of the symbol name as follows:

g Just as file names need not be qualified with a full path, you can qualify a
symbol’s scope without including all levels in the tree.

g If a qualified symbol begins with #, the name that follows indicates the
name of the executable or shared library (just as an absolute file path
begins with a directory immediately within the root directory). If the exe-
cutable or library component is omitted, the qualified symbol does not
begin with #.
80 Command Line Interface Guide Version 5.0

Using the CLI

Command and Prompt Formats
g The source file’s name may appear after the (possibly omitted) execut-
able or shared library.

g Because programming languages typically do not let you name blocks,
that portion of the qualifier is specified as a line number within the
block.

g The procedure name or block component (represented by a line number
from that block) may appear after the (possibly omitted) source file
name. This component is followed by #.

g The symbol name follows the (possibly omitted) procedure or block
name. Since qualified symbols often appear in the context of an expres-
sion, the final symbol name could be followed by a dot (.), plus the name
of a field from a class, union, or structure.

You can omit any part of the scope specification that is not needed to
uniquely identify the symbol. Thus, foo#x identifies the symbol x in the
procedure foo. In contrast, #foo#x identifies either procedure x in execut-
able foo or variable x in a scope from that executable.

Similarly, #foo#bar#x identifies variable x in procedure bar in executable
foo. If bar were not unique within that executable, the name would be
ambiguous unless you further qualified it by providing a file name. Ambigu-
ities can also occur if a file-level variable (common in C programs) has the
same name as variables declared within functions in that file. For instance,
bar.c#x refers to a file-level variable, but the name can be ambiguous
when there are different definitions of x embedded in functions occurring
in the same file. In this case, you would need to say bar.c#1#x to identify
the scope that corresponds to the “outer level” of the file (that is, the
scope containing line 1 of the file).

You can use the dwhat command to determine if an unqualified or partially
qualified symbol name is ambiguous.

Command and Prompt Formats
The appearance of the CLI prompt lets you know that the CLI is ready to
accept a command. This prompt lists the current focus, and then displays
Version 5.0 Command Line Interface Guide 81

4
Using the CLI

Built-In Aliases and Group Aliases
a greater-than symbol (>) and a blank space. (The current focus is the pro-
cesses and threads to which the next command applies.) For example:

d1.<> The current focus is the default set for each com-
mand, focusing on the first user thread in process 1.

g2.3> The current focus is process 2, thread 3; commands
act on the entire group.

t1.7> The current focus is thread 7 of process 1.

gW3.> All worker threads in the control group containing
process 3.

p3/3 Sets the process to process 3. The group of interest is
set to group 3.

You can change the prompt’s appearance by using the dset command to
set the PROMPT state variable. For example:

dset PROMPT “Kill this bug! > ”

Built-In Aliases and Group Aliases
Almost every CLI command has an alias that allows you to abbreviate the
command’s name. (An alias is one or more characters that the Tcl inter-
prets as a command or command argument.)

NOTE The “alias” command (see Chapter 5) lets you create your own aliases.

After a few minutes of entering CLI commands, you will quickly come to the
conclusion that it is much more convenient to use the command abbrevia-
tion. For example, you could type:

dfocus g dhalt

(This command tells the CLI to halt the current group.) It is much easier to
type:

f g h

While less-used commands are often typed in full, a few commands are al-
most always abbreviated. These command include dbreak (b), ddown (d),
dfocus (f), dgo (g), dlist (l), dnext (n), dprint (p), dstep (s), and dup (u).
82 Command Line Interface Guide Version 5.0

Using the CLI

Effects of Parallelism on TotalView and CLI Behavior
The CLI also includes uppercase “group” versions of aliases for a number of
commands, including all stepping commands. For example, the alias for
dstep is “s”; in contrast, “S” is the alias for “dfocus g dstep”. (The first
command tells the CLI to step the process. The second steps the control
group.)

Group aliases differ from the kind of group-level command that you would
type in two ways:

g They do not work if the current focus is a list. The g focus specifier mod-
ifies the current focus, and it can only be applied if the focus contains
just one term.

g They always act on the group, no matter what width is specified in the
current focus. Therefore, dfocus t S does a step-group command.

Effects of Parallelism on TotalView and CLI Behavior
A parallel program consists of some number of processes, each involving
some number of threads. Processes fall into two categories, depending on
when they are created:

g Initial process

A preexisting process from the normal run-time environment (that is,
created outside the debugger) or one that was created as TotalView
loaded the program.

g Spawned process

A new process created by a process executing under the CLI’s control.

TotalView assigns an integer value to each individual process and thread
under its control. This process/thread identifier can be the system identifier as-
sociated with the process or thread. However, it can be an arbitrary value
created by the CLI. Process numbers are unique over the lifetime of a de-
bugging session; in contrast, thread numbers are only unique over the life-
time of a process.

Process/thread notation lets you identify the component that a command
targets. For example, if your program has two processes, and each has two
threads, four threads exist:
Version 5.0 Command Line Interface Guide 83

4
Using the CLI

Effects of Parallelism on TotalView and CLI Behavior
Thread 1 of process 1
Thread 2 of process 1
Thread 1 of process 2
Thread 2 of process 2

You would identify the four threads as follows:

1.1—Thread 1 of process 1
1.2—Thread 2 of process 1
2.1—Thread 1 of process 2
2.2—Thread 2 of process 2

Kinds of IDs

Multithreaded, multiprocess, distributed program contain a variety of IDs.
Here is some background on the kinds used in the CLI and TotalView:

System PID This is the process ID and is generally called the PID.
This ID usually has a value between 100 and 32,000.
However, it can be higher on some systems.

Debugger PID This is an ID created by TotalView that lets it identify
processes. It is a sequentially numbered value begin-
ning at 1 that is incremented for each new process.
Note that if the target process is killed and restarted
(that is, you use the dkill and drun commands), the
debugger PID does not change. The system PID, how-
ever, changes since the operating system has created
a new target process.

System TID This is the ID of the system kernel or user thread. On
some systems (for example, AIX), the TIDs have no
obvious meaning. On other systems, they start at 1
and are incremented by 1 for each thread.

TotalView thread ID
This is usually identical to the system TID. On some
systems (such as AIX where the threads have no obvi-
ous meaning), TotalView uses its own IDs.

pthread ID This is the ID assigned by the Posix pthreads package.
On most systems, this differs from the system TID. In
these cases, it is a pointer value that points to the
pthread ID.
84 Command Line Interface Guide Version 5.0

Using the CLI

Controlling Program Execution
Controlling Program Execution
Knowing what is going on and where you program is executing is straight-
forward in a serial debugging environment. Your program is either stopped
or running. When it is running, an event such as arriving at a breakpoint can
occur. This event tells the debugger to stop the program. Sometime later,
you will tell the serial program to continue executing. Multiprocess and
multithreaded programs are much complicated. Each thread and each pro-
cess has its own execution state. When a thread (or set of threads) triggers
a breakpoint, TotalView must decide what it should do about the other
threads and processes. Some may stop; some may continue to run.

Advancing Program Execution

Debugging begins by entering a dload or dattach command. If you use the
dload command, you must use the drun command to start the program
executing. These three commands work at process level and cannot be
used to start an individual threads. (This is also true for the dkill com-
mand.)

To advance program execution, you enter a command that causes one or
more threads to execute instructions. The commands are applied to a P/T
set. Because the set does not have to include all processes and threads,
you can cause some processes to be executed while holding others back.
You can also advance program execution by increments, stepping the pro-
gram forward, and you can define the size of the increment.

Typically, debugging a program means that you have the program run, and
then you stop it and examine its state. In this sense, a debugger can be
thought of as tool that allows you to alter a program’s state in a controlled
way. And, debugging is the process of stopping the process to examine its
state. However, the term “stop” has a slightly different meaning in a multi-
process, multithreaded program; in these programs, stopping means that
the CLI holds one or more threads at a location until you enter a command
that tells them to start executing again.
Version 5.0 Command Line Interface Guide 85

4
Using the CLI

Controlling Program Execution
Action Points

Action points tell the CLI that it should stop a program’s execution. You can
specify four different kinds of action points:

g A breakpoint (see “dbreak” on page 142) stops the process when the pro-
gram reaches a location in the source code.

g A watchpoint (see “dwatch” on page 225) stops the process when the
value of a variable is changed.

g A barrier point (see “dbarrier” on page 137), as its name suggests, effec-
tively prevents processes from proceeding beyond a point until other
processes arrive. This gives you a method for synchronizing the activities
of processes. (Note that barriers can only be applied to entire pro-
cesses, not to individual threads.)

g An evaluation point (see “dbreak” on page 142) lets you programmatically
evaluate the state of the process or variable when execution reaches a
location in the source code. Evaluation points typically do not stop the
process; instead, they perform an action.

NOTE Extensive information on action points can be found in the TotalView User’s
Guide.

Each action point is associated with an action point identifier. You use these
identifiers when you need to refer to the action point. Like process and
thread identifiers, action point identifiers are assigned numbers as they are
created. The ID of the first action point created is 1. The second ID is 2,
and so on. These numbers are never reused during a debugging session.

The CLI and TotalView only let you assign one action point to a source
code line. However, neither limits the complexity of an action point.
86 Command Line Interface Guide Version 5.0

Version 5.0
Chapter 5
Type Transformations
In some cases, TotalView cannot display data in the way you intended. For exam-
ple, compilers do not place information within an executable that defines the
way data is used for C++ STL container types. Instead, they describe the imple-
mentation of the STL containers, which is normally not of interest to anyone
using these classes.

The type transformation system allows you to describe how TotalView should
display these kinds of data types.

Type Transformation Defined
TotalView, as it is shipped, knows how to display a variety of compiler-de-
fined data types and, depending on your programming language, structs,
or user-defined types. If your data embeds pointers, diving on a pointer
displays the “pointed to” data. If you are using more complicated data
types or are using the STL data types, you will need to create a prototype
that tells TotalView how it should display this data. This is because
TotalView displays your data as the compiler understands it to be defined.

The prototype you can define names a set of Tcl callback functions that
TotalView invokes when it displays your data. These routines tell TotalView
that is should display the information in the way you say, which will either
be a struct or an array. This process of telling TotalView how to display your
data is called type transformation.
Command Line Interface Guide 87

5
Type Transformations

Type Transformation Defined
For instance, the next figure shows how TotalView displays an object of
class vector<int> if you used the C++ std::vector used by g++.

Although this is exactly what the compiler told TotalView, most users
would like this information displayed as an array. After instantiating a
prototype for this type, TotalView can display this information as follows:

Notice that TotalView shows the vector’s current size and allows the user
to slice and filter the data. The user could even send this data to the
Visualizer.

FIGURE 26: Unmapped std::vector<int>

FIGURE 27: Mapped std::vector<int>
88 Command Line Interface Guide Version 5.0

Type Transformations

Type Transformation Defined
Creating Type Transformations

Creating and using a type transformation involves the following three
steps:

1 Define a set of Tcl callback functions. As you will see, the kind of
data being mapped determines the number and kind of callback
functions that you will use.

2 Use the TV::prototype command to create a new prototype object.
The callback functions are named as properties of this object.

You will define a separate prototype for each data type being mapped.

3 Individually add your prototype to each image object in your pro-
cess.

When TotalView parses the debug information created by your compiler, it
checks the type name. If the type name matches the prototype’s name
(which is actually regular expression), TotalView uses your callbacks to
redefine the type.

Later, when TotalView displays this data, it uses the callbacks to extract in-
formation from the specific instance. For example, the run-time bounds for
an array depend on the array being displayed.

Using Type Transformation

Creating a type transformation requires a sophisticated understanding of
the way the compiler stores information. However, using the type transfor-
mation is a simple process of instantiating the callback functions. At many
sites, the person who creates prototypes is different than the person who
actually uses them. That is, a prototype builder will create libraries of pro-
totypes that others will use.

For example, after someone writes the type transformation functions for a
std::vector type and places them in a .tcl file, anyone can use Tcl’s source
command to install the type transformation. In most cases, however, the
transformation is placed in an initialization file. The type mapping macros
end with two CLI statements that instantiate the type transformation.
Version 5.0 Command Line Interface Guide 89

5
Type Transformations

Type Transformation Defined
Here, for example, are the statements to install the std::vector type trans-
formation:

set proto_id [TV::prototype create array]

TV::prototype set $proto_id \
name {^(class|struct) (std::)?vector *<.*>$}\
language C++ \
validate_callback vector_validate \
type_callback vector_type \
address_callback vector_address \
typedef_callback vector_typedef \
rank_callback vector_rank \
bounds_callback vector_bounds

This example invokes the TV::prototype command twice. The first time
obtains a TotalView-generated identifier for the prototype. (This is similar
to a handle.) The second associated properties with a prototype ID.

Once the type transformation code is loaded, TotalView automatically ap-
plies it and you can forget that it exists. The only exception is when you
want to see the underlying implementation type. You can do this by using
the <internal> string to cast the type in a Variable Window. For example,
the following figure shows how the std::vector appears when it is cast to
class vector<int,allocator<int>> <internal>.

FIGURE 28: Internal View of std::vector<int>
90 Command Line Interface Guide Version 5.0

Type Transformations

Defining Prototypes
Defining Prototypes
A prototype contains the names of Tcl callback functions that are used at
various times in the type transformation process, as follows:

g When TotalView is creating a type object, it validates the prototype by
using a callback function that checks if the name of the prototype
matches that of the data type.

g When TotalView is about to display an object with this prototype, it
invokes callbacks that extract object properties.

g If a typedef is being set up, TotalView calls the typedef_callback.

As you will see, there are two styles of prototypes: arrays and structs. As
part of the process of defining the prototype, you must tell TotalView which
style you are creating.

The following properties are (or can be) included in all prototypes. Other
sections in this chapter present the routines that are associated with these
callbacks.

name (required) The regular expression that TotalView uses
to match types. It must be anchored (that is, start
with a “^” character.

language (required) The language for this prototype. It indi-
cates how TotalView parses the program’s data and
generates bounds and indices for it.

validate_callback (required) TotalView invokes this callback whenever a
type that matches the prototype’s name is defined. It
returns a Boolean value indicating if it should be
applied. This callback lets you have more than one
prototype match a type name, and then investigate
the type to determine if TotalView should apply the
prototype.

The call structure for a validation callback is:

validate_callback type_id

where type_id is the type identifier for the type being
prototyped.
Version 5.0 Command Line Interface Guide 91

5
Type Transformations

Defining Prototypes
address_callback Generates the address of the object’s elements at run
time. It returns either an absolute address, or an
addressing expression that is appended to the
address of the object to give the address of the field.
(Returning an expression is the preferred method.)

For example, you might use a callback if the original
data structure contains information on where the next
data instance resides.

If you are creating a type for a distributed array, this
procedure returns a two-element list. For more infor-
mation, see “The Distributed Addressing Callback” on
page 113.

The call structure for an address callback is:

address_callback type_id object_addr index [replication]

where:

type_id: is the type identifier for the type being proto-
typed.

object_addr: is the address of the object.

index: is the index string for the array element or the
index of the field in the structure.

replication: is only used for distributed array objects. It
indicates that the result is an address and an index
into the distribution to determine the process within
which this element resides, since this is a distributed
array.

type_callback (required) TotalView invokes this callback when the
prototype is modifying a type. Its format is:

type_callback type_id

Array prototypes: Returns a value that is the type identi-
fier for one of the array’s elements.

Struct prototypes: Returns a list in the format of the
struct_fields property that describes the struct type’s
fields. If a field in the type requires a callback, the
addressing section of its field description should be
the string callback rather than an addressing expres-
92 Command Line Interface Guide Version 5.0

Type Transformations

Defining Prototypes
sion. In this case, TotalView uses the address_callback
to generate the address of this field.

typedef_callback Defines an new_type_id in terms of the old_type_id. You
would use this callback when the prototype modifies
old_type_id.

typedef_callback new_type_id old_type_id

TotalView ignores any returned value.

The following three callbacks are only used with array prototypes:

bounds_callback Returns either a string that specifies the bounds stati-
cally or a callback that TotalView calls when the
object’s address is known. If you are naming a call-
back, its call structure is:

bounds_callback type_id object_address

The string returned by the callback describes the cur-
rent bounds. This string must be in program’s pro-
gramming language. For example:

C: [2][40]
Fortran: (-2:10,-5:5)

If the bounds start with a bracket “[“ or a parenthesis
“(“, TotalView assumes the bounds are static; other-
wise, TotalView assumes that the returned value is the
name of a callback function.

As the bracket characters ([]) are special characters in
Tcl, you must escape them even in strings; for exam-
ple \[20\] rather than [20].

rank_callback Returns the array’s rank. TotalView uses this callback
when the prototype modifies a type. Its call structure
is:

rank_callback type_id

distribution_callback
Returns a list of process or thread identifiers that rep-
resent (in order) the processes/threads in which ele-
ments of this array exist. Only use this callback when
your array is distributed over multiple processes. Its
call structure is:
Version 5.0 Command Line Interface Guide 93

5
Type Transformations

Defining Prototypes
distribution_callback type_id object_address

TotalView calls this callback with a replication index.
The returned value must have an index into the distri-
bution as well as an address.

Before using the TV::image add prototype command to add a prototype
to an image, you must use the TV::prototype set command to set its prop-
erties. After a prototype is added to an image, you can no longer change its
properties.

Objects Used in Type Transformation

A type transformation uses the following CLI commands. You will find ex-
tensive information about these commands in Chapter 6.

g TV::process, which accesses a process.

A process represents a single UNIX process. The process can have many
threads of control within it. A process always references at least one
image.

g TV::image, which accesses an image.

An image is the object that describes a single executable file—either the
executable image or a shared library. An image owns a set of types and a
set of prototypes.

You can ask a process which set of images it is currently using. Note that
this set can change if the process calls dlopen() to load a new shared
library, or dlclose() to remove one.

NOTE You can determine which prototypes are associated with an image by
using the “TV::image get image_id prototypes“ command. This command
returns a list of the prototype IDs added to the image.

Within an image, you can look up types by name. A single named type
may have many internal types associated with it because compilers
often output a type definition in the debug information for each source
file. This means that lookup operation returns a list of all of the types with
the requested name. For example:

d1.<> TV::image lookup 1|1 types <integer>
1|6

An image owns a set of types and refers to a set of prototypes.
94 Command Line Interface Guide Version 5.0

Type Transformations

Creating a struct Type Transformation
g TV::type, which acceses a type.

A type object holds the information about a single type. The type
belongs to an image object and cannot be used outside that image.

Creating a struct Type Transformation
This section describes a type transformation that is used with the g++
std::list class. Here is how this class is defined:

template <class _Tp>
struct _List_node {

typedef void* _Void_pointer;
_Void_pointer _M_next;
_Void_pointer _M_prev;
_Tp _M_data;

};

This template definition does not contain information that TotalView can
use to determine that object pointed to by the next and prev pointers are
_List_node objects. Creating a transformation will allow TotalView to dis-
play this information in a more orderly way.

Validating the Type: the list_validate Procedure

The first operation that TotalView will perform is to look at the datatypes
used in your application and decide which of them will be mapped. The val-
idation callback routine checks insures the type matches this code’s ex-
pectations. This routine will need to return the structure’s definition.

The list_validate routine casts the types in one of the subtypes of
_List_node<foo> that contains void * pointers. This allows them to be in-
terpreted as _List_node<foo> * pointers.

NOTE This code reflects the “libstd” c++ implementation of “list<>” used
by Linux g++ compilers.

proc list_validate {instance_id} {
Check for _M_next, _M_prev, and _M_data.
set fields [TV::type get $instance_id struct_fields]
set matched_fields 0
Version 5.0 Command Line Interface Guide 95

5
Type Transformations

Creating a struct Type Transformation
foreach field $fields {
set field_name [lindex $field 0]

switch -- $field_name {
_M_next -
_M_prev -
_M_data {

incr matched_fields
}

}
}

return [expr $matched_fields==3]
}

Redefining the Type: list_type Procedure

The list_type function returns the structure definition that TotalView will
use. This definition essentially duplicates the type’s definition except that
two of the type IDs become pointers to the real target type rather than
pointers to void.

proc list_type {instance_id} {
set instance_name [TV::type get $instance_id name]
set target_name "$instance_name *"
set ptr_id [TV::image lookup \

[TV::type get $instance_id image_id] types $target_name]

In case there is more than one type that matches,
choose the first.
set ptr_id [lindex $ptr_id 0]

Walk over the fields changing the types of appropriate
ones. Note that this does not touch the addressing. It
merely changes the types of some of the fields.
set original_fields [TV::type get $instance_id struct_fields]

foreach field $original_fields {
set field_name [lindex $field 0]

if {$field_name == "_M_next" || \
$field_name == "_M_prev"} {
96 Command Line Interface Guide Version 5.0

Type Transformations

Creating a struct Type Transformation
set field [lreplace $field 1 1 $ptr_id]
}
lappend result_fields $field

}

return $result_fields
}

Creating the Prototype

The following two commands create a prototype object and set the ob-
ject’s properties. The argument to the TV::prototype create command in-
dicates if you are defining an array or struct prototype. The TV::prototype
set command initializes the object’s properties.

set proto_id [TV::prototype create Struct]

TV::prototype set $proto_id \
name {^(class|struct) _List_node *<.*>$} \
language C++ \
validate_callback list_validate \
type_callback list_type

Making a Callback for a Structure Element

You could also request that an addressing callback be made for a structure
element. If you do, it is called when TotalView displays a specific instance
of the type. You can do this if you:

g Specify the addressing of the field as callback in the type callback.

g Provide an address_callback on the structure prototype.

The address callback will be called with the following arguments:

g The type_id for the type.

g The address of the instance.

g The index of the field whose address is required.

The address callback should return either an address expression or an
absolute address.

The following example does not create an addressing callback because the
structure field’s address does not depend on the specific instance of the
Version 5.0 Command Line Interface Guide 97

5
Type Transformations

Applying Prototypes to Images
structure. This means TotalView will have no problem evaluating it with own
addressing expression.

Applying Prototypes to Images
The properties of a prototype do not affect an object until you add it to an
image by using the TV::image add command. Here is this command’s for-
mat:

TV::image add image_id prototype proto_id

When you load a prototype, TotalView looks within its TV::image_load_-
callbacks variable. This variable contains a Tcl list of procedure names,
each of which is invoked by TotalView whenever a new image is loaded by
TotalView. This could occur when:

g A user invokes a command such as dload.

g TotalView resolves dynamic library dependencies.

g User code uses dlopen() to load a new image.

TotalView always initially sets this variable to a list containing the name of
the TV::propagate_prototypes routine. This function applies all proto-
types to every new image as it is loaded. Therefore, if you create proto-
types before any image is loaded (for instance, by executing prototype
creation code in a .tvdrc file), TV::propagate_prototypes tells TotalView to
apply all prototypes to all images as they are loaded.

By adding other function names to the TV::image_load_callbacks list, you
can tell TotalView to take additional actions. For instance, you could define
prototypes for g++ STL only when /lib/libstdc++.so is loaded.

TotalView invokes the functions in order, beginning at the first function in
the list.

If you create prototypes after images are loaded, and you want the proto-
types to be applied to the existing images, you will need to apply them ex-
plicitly to these images. The following example shows the kind of
98 Command Line Interface Guide Version 5.0

Type Transformations

Applying Prototypes to Images
procedure that you could write to apply prototypes to all images in the cur-
rent focus.

Given the identifier for a prototype object, add it to all
images used by processes in the current focus.
proc apply_prototype_to_focus {proto_id} {

set processes [TV::focus_processes]

Find the set of images.
foreach process $processes {

set images [TV::process get $process image_ids]
foreach image $images {

set image_names($image) true
}

}

Now add the prototype to the image.
foreach image [array names image_names] {

TV::image add $image prototype $proto_id
}

}

NOTE You can change any of a prototype’s properties before its added. As
soon as you add one, however, its properties are frozen and TotalView does
not allow you to alter them.

Here is how you would invoke this function:

apply_prototype_to_focus $proto_id

Initializing TotalView After Loading an Image

Immediately after TotalView loads an image and just before it runs it,
TotalView executes the routines listed in its TV::process_load_callbacks
lists. TotalView invokes these callbacks after it invokes the routines in the
TV::image_load_callbacks list. By default, the value of the TV::process_-
load_callbacks variable is {TV::source_process_startup}. The routines in
this second callback list are only called once even though your executable
may use many images (one for each shared library).

TotalView initializes the TV::image_load_callbacks list variable with the
name of the TV::source_process_startup routine. This routine looks for a
Version 5.0 Command Line Interface Guide 99

1

5
Type Transformations

An Array-Like Example
file with the same name as the newly loaded process’s executable image
that has a .tvd suffix appended to it. If the file exists, TotalView executes
the commands contained within it.

This function is passed a single argument that is the ID for the newly cre-
ated process.

An Array-Like Example
This section contains an extended example that performs a type transfor-
mation for the std::vector type. This example has two parts. The first part
uses CLI commands that install the callback functions. The second con-
tains several utility functions that simplify the logic of the callback func-
tions.

NOTE As an aid in understanding the function listings, these utility func-
tions are displayed in bold type.

This type transformation uses a global array to store information about the
vector type’s being remapped. This array, which is indexed by the type
identifier, contains the following three-element list:

g The type identifier for the type of the elements of the array.

g The offset of the _M_start field.

g The offset of the _M_finish field.

Indicating if a Type Is Mapped: The vector_validate Callback

The vector_validate procedure checks that this named type matches the
expected specification. This function expects the following input:

_Vector_base<int,allo.. class _Vector_base<..
(Private base class)

_Vector_alloc_base.. class _Vector_alloc..
(Public base class)

_M_start int*
_M_finish int*
_M_end_of_storage int*

It also extracts other information about the type and saves it for later use.
00 Command Line Interface Guide Version 5.0

Type Transformations

An Array-Like Example
proc vector_validate {instance_id} {
global _vector_type_info

set base_id [ultimate_base $instance_id]
set fields [TV::type get $base_id struct_fields]

Prepare the information that will be saved.
set typeinfo [list {} {} {}]

Search for _M_start and _M_finish.
foreach field $fields {

set name [lindex $field 0]
set addressing [lindex $field 2]

switch -- $name {
_M_start{

set typeinfo [lreplace $typeinfo 1 1 \
[extract_offset $addressing]]

Also extract the type
set field_typeid [lindex $field 1]
set typeinfo [lreplace $typeinfo 0 0 \

[TV::type get $field_typeid target]]
}
_M_finish {

set typeinfo [lreplace $typeinfo 2 2 \
[extract_offset $addressing]]

}
}

}
Check that the target type was found.
if {[lindex $typeinfo 0] == ""} {

return false
}

set _vector_type_info($instance_id) $typeinfo
return true

}

This procedure begins by finding the ultimate base class of the vector type,
and then checks that the data type has the named fields. It also checks
that the data type really is the class being transformed. Just before return-
ing, it places information needed by other procedures into the
_vector_type_info global array.
Version 5.0 Command Line Interface Guide 101

1

5
Type Transformations

An Array-Like Example
The vector_validate procedure returns false if it cannot match the target
type. This tells TotalView that it should not apply this prototype to the
type. TotalView will, however, continue searching for other prototypes
whose name matches the type’s name.

NOTE This procedure could fail if some code is compiled for g++, and
some by a vendor’s compiler.

Returning the Type: The vector_type Callback
The vector_type procedure returns the type ID for the target type. This is a
trivial process because the type ID was previously set by the
vector_validate procedure.

proc vector_type {instance_id} {
global _vector_type_info
return [lindex $_vector_type_info($instance_id) 0]

}

Returning the Rank: The vector_rank Callback
The vector_rank procedure is trivial because a vector is a one-dimensional
array. Consequently, the returned rank (that is, the number of dimensions)
is always 1.

proc vector_rank {type_name} {
return 1

}

Returning the Bounds: The vector_bounds Callback
The vector_bounds procedure returns the bounds of the object at an ad-
dress. This returned value is a string in the syntax of the language in which
the type was defined. TotalView calls this procedure whenever it is about to
display a std::vector object. This example must use a callback since the
vector type has dynamic bounds. If the type being mapped had static
bounds, the routine could just return a string.

The vector_bounds procedure calculates the bounds by:

g Reading the base and end pointers.

g Subtracting one of these values from the other.

g Dividing this value by the element size.
02 Command Line Interface Guide Version 5.0

Type Transformations

An Array-Like Example
Once again, this process is pretty simple because the vector_validate rou-
tine wrote much of this information into the _vector_type_info global vari-
able.

proc vector_bounds {type_id address} {
global _vector_type_info

set vti $_vector_type_info($type_id)

set start [read_store [expr $address+[lindex $vti 1]]]
set finish [read_store [expr $address+[lindex $vti 2]]]

Extract the length of the target type.
set type_size [TV::type get [lindex $vti 0] length]

set delta [expr ($finish-$start)/$type_size]

return "\[$delta\]"
}

Returning the Address: The vector_address Callback
The vector_address procedure computes the address of an array element.
TotalView calls it for each array element being displayed.

TotalView supplies the following three parameters when it calls your proce-
dure:

g The type ID.

g The array’s starting address.

g The index for which the address is required.

The callback returns an addressing expression that allows TotalView to gen-
erate the address of a vector element. In this example, the vector_address
function returns an addressing expression. Here is an example:

{{addc 4} indirect {addc 4}}

NOTE See “Addressing Expressions” on page 114 for information on the
operators and opcodes that you can use.

While an address procedure could return an absolute address, it should
instead return an addressing expression. Returning a procedure is better
Version 5.0 Command Line Interface Guide 103

1

5
Type Transformations

An Array-Like Example
because TotalView can then recalculate the address when you dive through
an element in a Variable Window. If you had returned an absolute address,
TotalView would use the address in the new Variable Window, even if the
vector has changed.

proc vector_address {type_id address indices} {
global _vector_type_info

set vti $_vector_type_info($type_id)

set type_size [TV::type get [lindex $vti 0] length]
set offset [expr $type_size*$indices]

We don't bother to worry about adding zero because
TotalView will remove any unnecessary additions.
set result "{{addc [lindex $vti 1]} indirect {addc $offset}}"

return $result
}

The typedef Callback
If your program defines a new type using a typedef for a mapped data type,
TotalView calls the typedef callback. This callback lets you copy state infor-
mation that is indexed by the type identifier since the new type will have a
different type identifier from the old one.

The following example copies vector information associated with one ID to
another”

proc vector_typedef {new_id old_id} {
global _vector_type_info
set _vector_type_info($new_id) $_vector_type_info($old_id)

}

Utility Procedures

This section presents three utility procedures that simplify the type map-
ping process for this type:

g The read_store Utility Procedure

g The ultimate_base Utility Procedure

g The extract_offset Utility Procedure
04 Command Line Interface Guide Version 5.0

Type Transformations

An Array-Like Example
The read_store Utility Procedure
The read_store procedure parses the output of the CLI’s dprint command,
and then stores and returns a value. This procedure reads a value from an
absolute address.

proc read_store {address {type void}} {
set res [capture dprint "*($type *)$address"]

Strip out just the value
regexp {^.*= ([^]*)} $res {} res

return $res
}

The regular expression uses the {} empty string to indicate that the CLI
should ignore the entire string that matches. The portion of the regular
expression within the parentheses (that is, the value) is assigned to res,
which is the function’s return value.

The ultimate_base Utility Procedure
The ultimate_base utility procedure finds the ultimate base class of a class
in a single inheritance chain by extracting the structure fields and iterating
over the information until it arrives at a class that does not have a base
class.

proc ultimate_base {type_id} {
while {1} {

set fields [TV::type get $type_id struct_fields]
set first_member [lindex $fields 0]
set properties [lindex $first_member 3]

if {[regexp {base class} $properties] == 0} {
return $type_id

} else {
set type_id [lindex $first_member 1]

}
}

}

Version 5.0 Command Line Interface Guide 105

1

5
Type Transformations

An Array-Like Example
The extract_offset Utility Procedure
The extract_offset routine evaluates and addressing expression so that it
can return an offset for a data item. This example assumes that the ad-
dressing expression uses addc, and returns the argument of the addc op-
code. This argument is the offset being added.

proc extract_offset {addressing_expr} {
if {[llength $addressing_expr] != 1} {

return 0
}

Unwind the list.
set addressing_expr [lindex $addressing_expr 0]
if {[lindex $addressing_expr 0] != "addc"} {

return 0
} else {

return addc's operand
return [lindex $addressing_expr 1]

}
}

Creating the Prototype

This section describes the two calls that must be made to the
TV::prototype command. The first tells TotalView to create a prototype and
the second defines this prototype’s properties.

The TV::prototype create command creates a new prototype object. Its
sole argument indicates if you are defining an array or struct prototype.
This ID for this object acts as a handle that you use when working with the
prototype. The second command, TV::prototype set, defines the proto-
type’s properties.

Here are the commands that set up the prototype for std::vector:

set proto_id [TV::prototype create array]

TV::prototype set $proto_id \
name {^(class|struct) (std::)?vector *<.*>$}\
language C++ \
validate_callback vector_validate \
typedef_callback vector_typedef \
06 Command Line Interface Guide Version 5.0

Type Transformations

Distributed Arrays
type_callback vector_type \
rank_callback vector_rank \
bounds_callback vector_bounds \
address_callback vector_address

The first statement creates the prototype and assigns the returned ID to
the proto_id variable. The next statement sets its properties. While these
statements create the new prototype and define its properties, the proto-
type is simply a definition of what can be done. This changes when you
activate it by adding it to an image. For example, you could use the
apply_prototype_to_focus routine described in “Applying Prototypes to
Images” on page 98 to activate it. Here is how you would use this function:

apply_prototype_to_focus $proto_id

Distributed Arrays
Many parallel applications operate on arrays that are distributed across the
parallel program’s processes. In these applications, each process operates
on a local component of a larger array. While each process has parts of the
data, you sometimes need to integrate all this data into a common Variable
Window to examine the data as it is being manipulated in all processes.

If the data is a standard C or Fortran array, you can use the Variable Win-
dow’s View > Laminate command. However, if the data’s type is more
complicated, you will need to use the type mapping’s distributed_callback
property. This property lets you see the distributed array in its own global
index space.

This section uses the mandel.c program that is listed in Appendix C, “Dis-
tributed Array Type Mapping”. This is a simple MPI program that distributes an
array cyclically in one dimension over all processors. Each processor calcu-
lates one part of the Mandelbrot set. Of course, mandel.c is not the best
way to compute the Mandelbrot set, but the point here is not the Mandel-
brot set, but the distributed array.

This program distributes an array of structures cyclically across all of the
processes in the MPI job in the second dimension. On each processor,
Version 5.0 Command Line Interface Guide 107

1

5
Type Transformations

Distributed Arrays
however, individual columns are held contiguously. The Mandlebrot pro-
gram’s local_column() and owner_of() procedures provide the transforma-
tion from a global array index to the local index and node. Figure 29 shows
how TotalView displays the structure’s array data on one node.

However, type transformation lets TotalView display the entire array in its
global index space. Figure 30 shows is a Variable Window that shows this
reassembled data.

Since TotalView knows that the array is distributed, you can even show in-
dividual node information. For example, tFigure 31 slices out the first ele-
ment of each column, and displays which node owns it.

FIGURE 29: Standard Display of struct “a” as an Array

FIGURE 30: Reassembled Display
08 Command Line Interface Guide Version 5.0

Type Transformations

Distributed Arrays
Visualizing a Distributed Array with Node Information

The reassembled array can also be sent to the Visualizer. Figure 32 shows
that the reassembled data does generate a Mandelbrot set.

FIGURE 31: A Slice of the Reassembled Array

FIGURE 32: Visualization of the Reassembled Array
Version 5.0 Command Line Interface Guide 109

1

5
Type Transformations

Distributed Arrays
The Type Transformation for mandel.c

The commands that install a type transformation for the distributed array
within mandel.c are:

set proto_id [TV::prototype create Array]

TV::prototype set $proto_id \
name {^struct cyclic_array$} \
language c \
validate_callback da_validate \
typedef_callback da_typedef \
type_callback da_type \
rank_callback da_rank \
bounds_callback da_bounds \
address_callback da_address \
distribution_callback da_distribution

apply_prototype_to_focus $proto_id

This chapter will only present validate_callback, address_callback, and the
distribution_callback procedures. The other callbacks and the related util-
ity functions are either identical or similar to those that have already been
discussed. (A complete listing of these callbacks is located in “The
cyclic_array.tcl Type Mapping File” on page 286.) The most important dif-
ferences between this distributed example and the other array example
are:

g The prototype also has a distribution_callback property. This callback
provides TotalView with the set of processes over which the array is
distributed.

g If an array prototype has a distribution callback, you must:

Add a replication argument to the addressing callback.

Provide an index into the distribution.

Create an addressing operation that indicates the process or thread
from which TotalView will fetch the data and its address.

Validating the Data Type: The da_validate Function

The da_validate function checks the data’s type is the one to be mapped
and that it contains the required fields. These fields are:
10 Command Line Interface Guide Version 5.0

Type Transformations

Distributed Arrays
struct cyclic_array
{
int * local_elements;
int local_count;
int global_count;
int numprocs;
int myproc;
};

Here is the validation procedure:

proc da_validate {instance_id} {
global _da_info

set fields [TV::type get $instance_id struct_fields]
We'll save four properties of each type:
The offset of the pointer to the local array.
The target type identifier.
The target type size.
The offset of the local_count.
The offset of the global count.
set typeinfo [list {} {} {} {} {}]
set matched 0

foreach field $fields {
set name [lindex $field 0]
set addressing [lindex $field 2]

switch -- $name {
local_elements {

set typeinfo [lreplace $typeinfo 0 0 \
[extract_offset $addressing]]

Extract the target type too.
set field_typeid \

[TV::type get [lindex $field 1] target]

set typeinfo [lreplace $typeinfo 1 1 $field_typeid]
set typeinfo [lreplace $typeinfo 2 2 \

[TV::type get $field_typeid length]]

incr matched
}

Version 5.0 Command Line Interface Guide 111

1

5
Type Transformations

Distributed Arrays
local_count {
set typeinfo [lreplace $typeinfo 3 3 \

[extract_offset $addressing]]
incr matched

}

global_count {
set typeinfo [lreplace $typeinfo 4 4 \

[extract_offset $addressing]]
incr matched

}
}

}

if {$matched != 3} {
return false

}

set _da_info($instance_id) $typeinfo
return true;

}

The da_distribution Callback Procedure

The following procedure returns a list of process and thread identifiers over
which this array is distributed. In this simple example, any of these arrays
are distributed over all processes.

proc da_distribution {type_id address} {
#
For the moment we assume this is all items in our
workers group.
global GROUP WGROUP _da_nprocs

Choose the first process in the focus set.
set proc [lindex [TV::focus_processes] 0]

Find the relevant worker group identifier.
set group_id $WGROUP($proc)

Extract the member identifiers from the worker
contents.
set res [lrange $GROUP($group_id) 1 end]
12 Command Line Interface Guide Version 5.0

Type Transformations

Distributed Arrays
Save the number of processes for later.
set _da_nprocs [llength $res]

return $res
}

The da_distribution procedure defines the set of processes or threads that
contribute data to the distributed object. It returns a list containing the
names of these objects. The order of the processes and threads in this list
is important since the value returned by the address callback (described in
the next section) to describe the process or thread is an index into this list.

The Distributed Addressing Callback

The da_address procedure computes the address of an array element.

proc da_address {type_id address indices replication} {
Each element lives in only one place, so we return a null
result if asked for other places for it.
if {$replication != 0} {

return ""
}

global _da_info _da_nprocs

set typeinfo $_da_info($type_id)
set bound [read_store \

[expr $address + [lindex $typeinfo 4]] int]

set distributed_index [lindex $indices 0]
set other_index [lindex $indices 1]
set node [expr $distributed_index%$_da_nprocs]
set local_index [expr $distributed_index/$_da_nprocs]

set element_size [lindex $typeinfo 2]

#
We have to work out the whole address.
#
set delta [expr $element_size* \

($other_index+$bound*$local_index)]
Version 5.0 Command Line Interface Guide 113

1

5
Type Transformations

Addressing Expressions
return \
"$node {addc [lindex $typeinfo 0]; indirect; addc $delta}"

}

The da_address routine begins by checking if TotalView is requesting extra
places where this data object might live—this occurs when your program is
updating a value in a distributed array. Since some elements of the array
could be replicated, TotalView attempts to update them everywhere they
may reside. In this example, however, the array data is not replicated. Con-
sequently, the routine returns a null string for all replication values except
the first.

For the first (and only) replicated element, da_address performs the same
calculations as the Fortran local_address() and iwho() procedures. These
routines:

g Compute the index into the local array and the node index for an
element.

g Compute the element’s full offset, including the address in the undis-
tributed dimension.

g Return the node index and an addressing expression that allows
TotalView to locate the data object.

The procedure uses the gSizeof_Element, gDa_Nprocs, and
gArray_Bound global variables set up by earlier callbacks.

Addressing Expressions
An addressing expression tells TotalView how to address a variable, a field
in a structure, or an element in an array. Using the TV::type get image_id
struct_fields command, you can obtain the addressing expressions being
used by TotalView. You will also need to pass an addressing expression back
to TotalView that uniquely describes how TotalView will locate data ele-
ments.

Wherever possible, a callback should generate an addressing expression
rather than returning an absolute address since the use of addressing ex-
pressions is much more efficient.
14 Command Line Interface Guide Version 5.0

Type Transformations

Addressing Expressions
TotalView uses addressing expressions as results from the TCL callback
functions when handling variables with prototyped types; they are gener-
ated by TotalView to describe the addressing required to reach a field in a
composite type. They can then be seen as part of the result of the TV::type
get struct_fields command.

An addressing expression is a set of operations for a stack-machine that
evaluate an address. These operations are appended to those that Total-
View has already used to reach the specific instance of the object with that
type.

All addressing expressions should be wrapped in {} and can be structured
as arbitrary lists. When generating addressing expressions, TotalView for-
mats each opcode/operand pair as one sublist containing the expression;
for example:

d1.<> TV::type get 1|11 struct_fields
{bit_enum 1|12 {{bitfield_index {2>>0 unsigned}} } {}}
{wide_enum 1|13 {{bitfield_index {30>>2 unsigned}} } {}}

TotalView ignores the list structure when it reads an addressing expression
generated by user code.

A simple numeric operand is described below as opd, which is a single deci-
mal or hexadecimal (0x...) number.

The bitfield_index and bitfield_value opcodes are more complicated and
are encoded as:

size>>shift [un]signed

where:

size is the size in bits of the field and shift is the shift required to justify the
field at the low-significance end of the word. This field is sign-extended if
tagged as signed; otherwise, it remains unsigned.

The following tables use the following notation and abbreviations:

TOS Top of Stack.

memory[n] The world value read from the thread address space at
address n.
Version 5.0 Command Line Interface Guide 115

1

5
Type Transformations

Addressing Expressions
stack[n] The value of the nth element of the stack, where
stack[0] is the top of the stack.

The following opcodes do not use values on the stack. However, they do
push the stack.

The following table lists opcodes with operands that also use data from the
TOS.

TABLE 4: Operations with Nonstack Opcodes

Opcode Meaning
ldac opd Load the address of the constant opd
ldal opd Load the address of the local variable whose off-

set from the frame pointer is opd
ldar opd Load the address of register opd
ldatls opd Load the address of the thread local storage

object at offset opd in the thread local space
ldc opd Load the constant opd
ldgtls opd Load the address of the general thread local

storage object whose key is opd
ldl opd Load the value of the local variable whose offset

from the frame pointer is opd
ldm opd Load the value stored in memory at address opd
ldr opd Load the contents of register opd

TABLE 5: Opcodes with Operands that Use the TOS (Top of Stack)

Opcode Meaning
addc opd TOS = TOS + opd
bitfield_index bitopd Load the address of the bit field whose store address

is in the TOS. This must be the last opcode in an
addressing expression.

indirect_small opd Load opd bytes from memory[TOS] and zero extend.
ldnl opd Load the value at address TOS+opd.
16 Command Line Interface Guide Version 5.0

Type Transformations

Addressing Expressions
For opcodes without operands, all data comes from the stack.

The following special opcode is most often used in addressing expressions
that are appended to existing addressing expressions:

TABLE 6: Operands Without Opcodes

Operand Meaning
abs TOS = abs (TOS)
and TOS = TOS & stack[1]
div TOS = TOS / stack[1]
drop Pop TOS and discard
dup Push TOS
indirect TOS = memory[TOS]
minus TOS = TOS - stack[1]
mod TOS = TOS % stack[1]
mul TOS = TOS * stack[1]
neg TOS = - TOS
not TOS = ~ TOS
or TOS = TOS | stack[1]
over Push the second entry on the stack
plus TOS = TOS + stack[1]
rot Rotate the top three stack entries.
shl TOS = TOS << stack[1]
shr TOS = TOS >> stack[1] (unsigned shift)
shra TOS = TOS >> stack[1] (signed shift)
swap Swap top two stack entries
xor TOS = TOS ^ stack[1]

TABLE 7: Special Opcode

Opcode Meaning
remove_indirection Removes an indirection operation from the tail of the

previous addressing expression; this is useful when
you for backing up from data to a dope vector. (See
the Glossary for more information.)
Version 5.0 Command Line Interface Guide 117

1

5
Type Transformations

Debugging Tcl Callback Code
Debugging Tcl Callback Code
The first step in debugging a callback is to make sure that the function can
works when it is not used in a type transformation callback; that is, if the
function works when it is not used within a type mapping, it should work
within one. Many procedures do not need to be tested within TotalView
and can instead be tested directly by using a Tcl interpreter such as tclsh.
In this environment, you can use standard Tcl debugging tools.

If one of your procedures throws a Tcl error inside a TotalView callback,
TotalView prints a Tcl stack backtrace. For example:

CLI callback 'dfocus {1.1} {vector_address
{class vector<int,allocator<int> >} 0xbffff9dc {0 } }' failed
can't read "foo": no such variable while executing
"set type_sizes $foo"

(procedure "vector_address" line 6)
invoked from within

"vector_address {class vector<int,allocator<int> >}
0xbffff9dc {0 } " invoked from within
"dfocus {1.1} {vector_address {class
vector<int,allocator<int> >}
0xbffff9dc {0 } }"

If neither of these techniques helps, you will need to print values from your
Tcl code as it executes so that you can see what is happening. You might
want to use a debugging procedure such as:

proc my_puts {{string ""}} {
global gMy_Debug

if {$gMy_Debug} {
puts $string

}
}

The my_puts function will only print a message if the gMy_Debug global
variable is set to true. This lets you enable and disable printing information
by changing gMy_Debug’s value.
18 Command Line Interface Guide Version 5.0

Version 5.0
Chapter 6
CLI Commands
This chapter contains detailed descriptions of CLI commands.

Command Overview
This section lists all of the CLI commands. It also contains a short explana-
tion of what each command does.

Environment Commands
The CLI commands in this group provide information on the general CLI
operating environment:

g alias: Creates or views pseudonym for commands and arguments.

g capture: Allows commands that print information to instead send their
output to a variable.

g dlappend: Appends list elements to a TotalView variable.

g dset: Changes or views values of TotalView state variables.

g dunset: Restores default settings of TotalView state variables.

g help: Displays help information.
g stty: Sets terminal properties.

g unalias: Removes a previously defined alias.
Command Line Interface Guide 119

1

6
CLI Commands
CLI Initialization and Termination
These commands initialize and terminate the CLI session, and add pro-
cesses to CLI control:

g dattach: Brings one or more processes currently executing in the normal
run-time environment (that is, outside TotalView) under TotalView con-
trol.

g ddetach: Detaches TotalView from a process.

g dkill: Kills existing user processes, leaving debugging information in
place.

g dload: Loads debugging information about the program into TotalView
and prepares it for execution.

g drerun: Restarts a process.

g drun: Starts or restarts the execution of user processes under control of
the CLI.

g exit, quit: Exits from TotalView, ending the debugging session.

Program Information
The following commands provide information about a program's current
execution location and allow you to browse the program's source files:

g ddown: Navigates through the call stack by manipulating the current
frame.

g dlist: Browses source code relative to a particular file, procedure, or line.

g dprint: Evaluates an expression or program variable and displays the
resulting value.

g dptsets: Shows status of processes and threads in a P/T set.

g dstatus: Shows status of processes and threads.

g dup: Navigates through the call stack by manipulating the current frame.

g dwhat: Determines what a name refers to.

g dwhere: Prints information about the thread’s stack.
20 Command Line Interface Guide Version 5.0

CLI Commands
Execution Control
The following commands control execution:

g dcont: Continues execution of processes and waits for them.

g dfocus: Changes the set of processes, threads, or groups upon which a
CLI command acts.

g dgo: Resumes execution of processes (without blocking).

g dgroups: Manipulates and manages groups.

g dhalt: Suspends execution of processes.

g dhold: Holds threads or processes.

g dnext: Executes statements, stepping over subfunctions.

g dnexti: Executes machine instructions, stepping over subfunctions.

g dout: Runs out of current procedure.

g dstep: Executes statements, moving into subfunctions if required.

g dstepi: Executes machine instructions, moving into subfunctions if
required.

g dunhold: Releases held threads.

g duntil: Executes statements until a statement is reached.

g dwait: Blocks command input until processes stop.

g dworker: Adds or removes threads from a workers group.

Action Points

The following action point commands are responsible for defining and
manipulating the points at which the flow of program execution should
stop so that you can examine debugger or program state:

g dactions: Views information on action point definitions and their current
status; it also saves and restores action points.

g dbarrier: Defines a process barrier breakpoint.

g dbreak: Defines a breakpoint.

g ddelete: Deletes an action point.

g ddisable: temporarily disables an action point.

g denable: Reenables an action point that has been disabled.

g dwatch: Defines a watchpoint.
Version 5.0 Command Line Interface Guide 121

1

6
CLI Commands
Other Commands
The commands in the category do not fit into any of the other categories.

g dassign: Changes the value of a scalar variable.

g dcheckpoint: Creates a file that can later be used to restart a program.

g drestart: Restarts a checkpoint.

Accessor Functions
The following functions, all within the TV:: namespace, access and set
TotalView properties:

g actionpoint: Accesses and sets action point properties.

g focus_groups: Returns a list containing the groups in the current focus.

g focus_processes: Returns a list of processes in the current focus.

g focus_threads: Returns a list of threads in the current focus.

g group: Accesses and sets group properties.

g image: Accesses and sets image properties.

g process: Accesses and sets process properties.

g prototype: Accesses and sets prototype properties.

g thread: Accesses and sets thread properties.

g type: Accesses and sets data type properties.

Helper Functions
The following commands, all within the TV:: namespace, are most often
used within scripts:

g dec2hex: Converts a decimal number into hexadecimal format.

g dlappend: Appends list elements to a TotalView variable.

g errorCodes: Returns or raises TotalView error information.

g hex2dec: Converts a hexadecimal number into decimal format.

g respond: Sends a response to a command.

g source_process_startup: “Sources” a .tvd file when a process is loaded
22 Command Line Interface Guide Version 5.0

CLI Commands

actionpoint
actionpoint
Sets and gets action point properties
Format:

TV::actionpoint action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Lists the subcommands that you can use. The CLI
responds by displaying the four subcommands shown
here. No other arguments are used with this subcom-
mand.

get Retrieves the values of one or more action point prop-
erties. other-args can include one or more property
names. The CLI returns values for these properties in
a list whose order is the same as the property names
you entered.

If you use the –all option as the object-id, the CLI
returns a list containing one (sublist) element for each
object.

properties Lists the action point properties that TotalView can
access. No other arguments are used with this sub-
command.

set Sets the values of one or more properties. other-args
contains property name and value pairs.

object-id An identifier for the action point.

other-args Are arguments that the get and set actions use.

Description:
The TV::actionpoint command lets you examine and set action point
properties and states. These states and properties are:

address The address of the action point.

enabled A value (either 1 or 0) indicating if the action point is
enabled. 1 means enabled. (settable)

expression The expression to be executed at an action point.
(settable)

id The ID of the action point.
Version 5.0 Command Line Interface Guide 123

1

6
CLI Commands

actionpoint
language The language in which the action point expression is
written.

length The length in bytes of a watched area. This property is
only valid for watchpoints. (settable)

line The source line at which the action point is set. This is
not valid for watchpoints.

satisfaction_group The group that must arrive at a barrier for the barrier
to be satisfied. (settable)

share A value (either 1 or 0) indicating if the action point is
active in the entire share group. 1 means that it is.
(settable)

stop_when_done Indicates what is stopped when a barrier is satisfied
(in addition to the satisfaction set). Values are
process, group, or none. (settable)

stop_when_hit Indicates what is stopped when an action point is hit
(in addition to the thread that hit the action point).
Values are process, group, or none. (settable)

type The object’s type. See type_values for a list of possi-
ble types.

type_values Lists values that can be assigned to the type property:
break, eval, process_barrier, thread_barrier, and
watch.

Examples:
TV::actionpoint set 5 share 1 enable 1

Shares and enables action point 5.

f p3 TV::actionpoint set –all enable 0
Disables all the action points in process 3.

foreach p [TV::actionpoint properties] {
puts [format “%20s %s” $p: [TV::actionpoint get 1 $p]]

Dumps all the properties for action point 1. Here is
what your output might look like:

address: 0x1200019a8
enabled: 0

expression:
id: 1

language:
length:
24 Command Line Interface Guide Version 5.0

CLI Commands

actionpoint
line: /temp/arrays.F#84
satisfaction_group:

satisfaction_process:
satisfaction_width:

share: 1
stop_when_done:

stop_when_hit: group
type: break

type_values: break eval process_barrier
thread_barrier watch
Version 5.0 Command Line Interface Guide 125

1

6
CLI Commands

alias
alias Creates or views pseudonyms for commands
Format:

Creates a new user-defined pseudonym for a command

alias alias-name defn-body

Views previously defined aliases

alias [alias-name]

Arguments:
alias-name The name of the command pseudonym being defined.

defn-body The text that Tcl will substitute when it encounters
alias-name.

Description:
The alias command associates a name you specify with text that you
define. This text can contain one or more commands. After you create an
alias, you can use it in the same way as a native TotalView or Tcl command.
In addition, you can include an alias as part of a definition of another alias.

If you just do not enter an alias-name argument, the CLI displays the names
and definitions of all aliases. If you just specify an alias-name argument, the
CLI displays the definition of the alias.

Because the alias command can contain Tcl commands, you must ensure
that defn-body complies with all Tcl expansion, substitution, and quoting
rules.

TotalView’s global startup file, tvdinit.tvd, defines a set of default aliases.
All the common commands have one- or two-letter aliases. (You can obtain
a list of these commands by typing alias—being sure not to use an argu-
ment—in the CLI window.)

You cannot use an alias to redefine the name of a CLI-defined command.
You can, however, redefine a built-in CLI command by creating your own Tcl
procedure. For example, here is a procedure that disables the built-in
dwatch command. When a user types dwatch, the CLI executes this code
instead of the built-in CLI code:

proc dwatch {} {
puts “The dwatch command is disabled”

}

26 Command Line Interface Guide Version 5.0

CLI Commands

alias
The CLI does not parse defn-body (the command’s definition) until it is used.
Thus, you can create aliases that are nonsensical or incorrect. The CLI only
detects errors when it tries to execute your alias.

When you obtain help for a command, the help text includes information
for TotalView’s predefined aliases.

Examples:
alias nt dnext Defines a command called nt that executes the dnext

command.

alias nt Displays the definition of the nt alias.

alias Displays the definitions of all aliases.

alias m {dlist main}
Defines an alias called m that lists the source code of
function main.

alias step2 {dstep; dstep}
Defines an alias called step2 that does two dstep
commands. This new command will apply to the focus
that exists when someone uses this alias.

alias step2 {s ; s} Creates an alias that performs the same operations as
the one in the previous example. It differs in that it
uses the alias for dstep. Note that you could also cre-
ate an alias that does the same thing as follows: alias
step2 {s 2}.

alias step1 {f p1. dstep}
Defines an alias called step1 that steps the first user
thread in process 1. Note that all other threads in the
process run freely while TotalView steps the current
line in your program.
Version 5.0 Command Line Interface Guide 127

1

6
CLI Commands

capture
capture Returns a command’s output as a string
Format:

capture command

Arguments:
command The CLI command (or commands) whose output is

being captured. If you are specifying more than one
command, you must enclose them within braces ({ }).

Description:
The capture command executes command, capturing all output that would
normally go to the console into a string. After command completes, it
returns the string. The capture command lets you obtain the printed out-
put of any CLI command so that you can assign it to a variable or otherwise
manipulate it. This command is analogous to the UNIX shell’s back-tick
feature; that is, `command`.

Examples:
set save_stat [capture st]

Saves the current process status into a Tcl variable.

set vbl [capture {foreach i {1 2 3 4} {p int2_array($i)}}]
Saves the printed output of four array elements into a
Tcl variable. Here is some sample output:

int2_array(1) = -8 (0xfff8)
int2_array(2) = -6 (0xfffa)
int2_array(3) = -4 (0xfffc)
int2_array(4) = -2 (0xfffe)

Because capture records all of the information sent to
it by the commands in the foreach, you do not have
to use a dlist command.

exec cat << [capture help commands] > cli_help.txt
Writes the help text for all TotalView commands to the
cli_help.txt file.
28 Command Line Interface Guide Version 5.0

CLI Commands

dactions
dactions Displays information, saves, and reloads action points
Format:

Displays information about action points

dactions [ap-id-list] [–at source-loc] [–enabled | –disabled]

Saves action points to a file

dactions –save [filename]

Loads previously saved action points

dactions –load [filename]

Arguments:
ap-id-list A list of action point identifiers. If you specify individ-

ual action points, the information displayed is limited
to these points.

If you omit this argument, TotalView displays summary
information about all action points in the processes in
the focus set. If one ID is entered, TotalView displays
full information for it. If more than one ID is entered,
TotalView just displays summary information for each.

–at source-loc Displays the action points at source-loc.

–enabled Only shows enabled action points.

–disabled Only shows disabled action points.

–save Writes information about action points to a file.

–load Restores action point information previously saved in
a file.

filename The name of the file into which TotalView will read and
write action point information. If you omit this file-
name, TotalView writes them to a file named
program_name.TVD.breakpoints, where program_name is
the name of your program.

Description:
The dactions command displays information about action points in the
processes in the current focus. The information is printed; it is not
returned.
Version 5.0 Command Line Interface Guide 129

1

6
CLI Commands

dactions
This command also lets you obtain the action point identifier. You will need
to use this identifier when you delete, enable, and disable action points.

NOTE The identifier is returned when the action point is created. It is also displayed
when the target stops at an action point.

You can include specific action point identifiers as arguments to the com-
mand when detailed information is required. The –enabled and –disabled
options restrict output to action points in one of these states.

You cannot use the dactions command when you are debugging a core file
or before TotalView loads executables.

The –save option tells TotalView that it should write action point informa-
tion to a file so that either you or TotalView can restore your action points
at a later time. The –load option tells TotalView that it should immediately
read in the saved file. If you use the filename argument with either of these
options, TotalView either writes to or reads from this file. If you do not use
this argument it uses a file named programname.TVD.breakpoints where pro-
gramname is the name of your program. This file is written to the same
directory as your program.

The information saved includes expression information associated with the
action point and whether the action point is enabled or disabled. For
example, if your program’s name is foo, it writes this information to
foo.TVD.breakpoints.

NOTE TotalView does not save information about watchpoints.

If a file with the default name exists, TotalView can read this information
when it starts your program. When TotalView exits, it can create the default.
For more information, see File > Preferences within TotalView’s Help sys-
tem.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

ac {dactions} Displays all action points
30 Command Line Interface Guide Version 5.0

CLI Commands

dactions
Examples:
ac –at 81 Displays information about the action points on line

81. (Notice that this example uses the alias instead of
the full command name.) Here is the output from this
command:

ac –at 81
1 shared action point for group 3:

1 addr=0x10001544 [arrays.F#81] Enabled
Share in group: true
Stop when hit: group

dactions 1 3 Displays information about action points 1 and 3, as
follows:

2 shared action points for process 1:
1 addr=0x100012a8 [arrays.F#56] Enabled
3 addr=0x100012c0 [arrays.F#57] Enabled

dfocus p1 dactions Displays information on all action points defined
within process 1.

dfocus p1 dactions –enabled
Displays information on all enabled action points
within process 1.
Version 5.0 Command Line Interface Guide 131

1

6
CLI Commands

dassign
dassign Changes the value of a scalar variable
Format:

dassign target value

Arguments:
target The name of a scalar variable within your program.

value A source-language expression that evaluates to a sca-
lar value. This expression can use the name of another
variable.

Description:
The dassign command evaluates an expression and replaces the value of a
variable with the evaluated result. The location may be a scalar variable, a
dereferenced pointer variable, or an element in an array or structure.

The default focus for dassign is thread. So, if you do not change the focus,
this command acts upon the thread of interest. If the current focus specifies a
width that is wider than t (thread) and is not d (default), dassign iterates
over the threads in the focus set and performs the assignment in each. In
addition, if you use a list with the dfocus command, dassign iterates over
each list member.

The CLI interprets each symbol name in the expression according to the
current context. Because the value of a source variable may not have the
same value across threads and processes, the value assigned can differ in
your threads and processes. If the data type of the resulting value is incom-
patible with that of the target location, you must cast the value into the
target’s type. (Casting is described in Chapter 7 of the TOTALVIEW USERS
GUIDE.)

Here are some things you should know about assigning characters and
strings:

g If you are assigning a character to a target, place the character value
within single quotation marks; for example, ‘c’.

g You can use the standard C language escape character sequences; for
example, \n, \t, and the like. These escape sequences can also be within
a character or string assignment.
32 Command Line Interface Guide Version 5.0

CLI Commands

dassign
g If you are assigning a string to a target, place the string within quotation
marks. However, you must “escape” the quotation marks so they are not
interpreted by Tcl; for example, \”The quick brown fox\”.

If value contains an expression, the expression is evaluated by TotalView’s
expression system. This system is discussed in Chapter 8 of the TOTALVIEW
USERS GUIDE.

Command alias:
You may find the following alias useful:

Examples:
dassign scalar_y 102

Stores the value 102 in each occurrence of variable
scalar_y for all processes and threads in the current
set.

dassign i 10*10 Stores the value 100 in variable i.

dassign i i*i Does not work and the CLI displays an error message.
If i is a simple scalar variable, you could use the fol-
lowing statements:

set x [lindex [capture dprint i] 2]
dassign i [expr $x * $x]

f {p1 p2 p3} as scalar_y 102
Stores the value 102 in each occurrence of variable
scalar_y contained within processes 1, 2, and 3.

Alias Definition Meaning

as {dassign} Changes a scalar variable’s value.
Version 5.0 Command Line Interface Guide 133

1

6
CLI Commands

dattach
dattach Brings currently executing processes under CLI control
Format:

dattach [–g gid] [–r hname]
[–ask_attach_parallel | –no_attach_parallel]
[–e] fname pid-list

Arguments:
–g gid Sets the control group for the processes being added

to be group gid. This group must already exist. (The
CLI GROUPS variable contains a list of all groups. See
GROUPS on page 203 for more information.)

–r hname The host on which the process is running. The CLI will
launch a TotalView Debugger Server on the host ma-
chine if one is not already running there. Consult the
TOTALVIEW USER GUIDE for information on the launch
command used to start this server.

Setting a host sets it for all PIDs attached to in this
command. If you do not name a host machine, the
CLI uses the local host.

–ask_attach_parallel
Asks if TotalView should attach to parallel processes
of a parallel job. The default is to automatically attach
to processes. For additional information, see File >
Preferences in TotalView’s Help.

–no_attach_parallel Do not attach to any additional parallel processes
within a parallel job. For additional information, see
File > Preferences in TotalView’s Help.

–e Tells the CLI that the next argument is a file name. You
need to use this argument if the file name begins with
a dash (–) or only uses numeric characters.

fname The name of the executable. Setting an executable
here, sets it for all PIDs being attached to in this com-
mand. If you do not include this argument, the CLI
tries to determine the executable file from the pro-
cess. Some architectures do not allow this to occur.

pid-list A list of system-level process identifiers (such as a
UNIX PID) naming the processes that TotalView will
34 Command Line Interface Guide Version 5.0

CLI Commands

dattach
control. All PIDs must reside on the same system and
they will all be placed into the same control group.

If you need to place the processes in different groups
or attach to processes on more than one system, you
must use multiple dattach commands.

Description:
The dattach command tells TotalView to attach to one or more processes,
making it possible to continue process execution under CLI control.

This command returns the TotalView process ID (DPID) as a string. If you
specify more than one process in a command, dattach returns a list of
DPIDs instead of a single value.

TotalView places all processes to which it attaches in one dattach com-
mand in the same control group. This allows you to place all processes in a
multiprocess program executing on the same system in the same control
group.

If a program has more than one executable, you must use a separate
dattach for each.

If the fname executable is not already loaded, the CLI searches for it. The
search will include all directories in the EXECUTABLE_PATH CLI state vari-
able.

The process identifiers specified in the pid-list must refer to existing pro-
cesses in the run-time environment. TotalView attaches to the processes,
regardless of their execution states.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

at {dattach} Brings the process under CLI con-
trol
Version 5.0 Command Line Interface Guide 135

1

6
CLI Commands

dattach
Examples:
dattach mysys 10020

Loads debugging information for mysys and brings
the process known to the run-time system by PID
10020 under CLI control.

dattach –e 123 10020
Loads file 123 and brings the process known to the
run-time system by PID 10020 under CLI control.

dattach –g 4 –r Enterprise myfile 10020
Loads myfile that is executing on the host named
Enterprise into group 4 and brings the process known
to the run-time system by PID 10020 under CLI con-
trol. If a TotalView Debugger Server (tvdsvr) is not run-
ning on Enterprise, the CLI will start it.

dattach my_file 51172 52006
Loads debugging information for my_file and brings
the processes corresponding to PIDs 51172 and
52006 under CLI control.

set new_pid [dattach –e mainprog 123]
dattach –r otherhost –g $CGROUP($new_pid) –e slaveprog 456

Begins by attaching to mainprog running on the local
host. It then attaches to slaveprog running on
otherhost and inserts them both in the same control
group.
36 Command Line Interface Guide Version 5.0

CLI Commands

dbarrier
dbarrier Defines a process or thread barrier breakpoint
Format:

Creates a barrier breakpoint at a source location

dbarrier source-loc [–stop_when_hit width]
[–stop_when_done width]

Creates a barrier breakpoint at an address

dbarrier –address addr [–stop_when_hit width]
[–stop_when_done width]

Arguments:
source-loc The breakpoint location as a line number or as a string

containing a file name, function name, and line num-
ber, each separated by # characters; for example,
#file#line. If you omit parts of this specification, the
CLI will create them for you. For more information,
see “Qualifying Symbol Names” on page 80.

–address addr The breakpoint location as an absolute address in the
address space of the program.

–stop_when_hit width
Tells the CLI what else it should stop when it stops the
thread arriving at a barrier.

If you do not use this option, the value of the
BARRIER_STOP_ALL state variable indicates what
TotalView will stop.

This command’s width argument indicates what else
TotalView stops. You can enter one of the following
three values:

group Stops all processes in the control group when the bar-
rier is hit.

process Stops the process that hit the barrier.

none Stops the thread that hit the barrier; that is, the
thread will be held and all other threads continue run-
ning. If you apply this width to a process barrier,
TotalView will stop the process that hit the break-
point.
Version 5.0 Command Line Interface Guide 137

1

6
CLI Commands

dbarrier
–stop_when_done width
After all processes or threads reach the barrier, the
CLI releases all processes and threads held at the bar-
rier. (Released means that these threads and processes
can run.) Setting this option tells the CLI that it should
stop additional threads contained in the same group
or process.

If you do not use this option, the value of the
BARRIER_STOP_WHEN_DONE state variable indi-
cates what else TotalView stops.

The width argument indicates what else is stopped.
You can enter one of the following three values:

group Stops the entire control group when the barrier is sat-
isfied.

process Stops the processes containing threads in the satis-
faction set when the barrier is satisfied.

You will find information on the “satisfaction set” in
this topic’s Description section.

none Stops the satisfaction set. For process barriers,
process and none have the same effect. This is the
default if BARRIER_STOP_WHEN_DONE is none.

Description:
The dbarrier command sets a process or thread barrier breakpoint that is
triggered when execution arrives at a location. This command returns the
ID of the newly created breakpoint.

The dbarrier command is most often used to synchronize a set of threads.
The P/T set defines which threads are affected by the barrier. When a thread
reaches a barrier, it stops, just as it does for a breakpoint. The difference is
that TotalView prevents—that is, holds—each thread reaching the barrier
from responding to resume commands (for example, dstep, dnext, and
dgo) until all threads in the affected set arrive at the barrier. When all
threads reach the barrier, TotalView considers the barrier to be satisfied and
releases these threads. They are just released; they are not continued. That is,
TotalView leaves them stopped at the barrier. If you now continue the pro-
cess, those threads stopped at the barrier also run along with any other
38 Command Line Interface Guide Version 5.0

CLI Commands

dbarrier
threads that were not participating with the barrier. After they are released,
they can respond to resume commands.

If the process is stopped and then continued, the held threads, including
the ones waiting on an unsatisifed barrier, do not run. Only unheld threads
run.

The satisfaction set for the barrier is determined by the current focus. If the
focus group is a thread group, TotalView creates a thread barrier.

g When a thread hits a process barrier, TotalView holds the thread’s pro-
cess.

g When a thread hits a thread barrier, TotalView holds the thread;
TotalView may also stop the thread’s process or control group. Neither
are held.

TotalView determines what processes and threads are part of the satisfac-
tion set by taking the intersection of the share group with the focus set.
(Barriers cannot extend beyond a share group.)

The CLI displays an error message if you use an inconsistent focus list.

NOTE Barriers can create deadlocks. For example, if two threads participate in two
different barriers, each could be left waiting at different barriers, barriers that can
never be satisfied. A deadlock can also occur if a barrier is set in a procedure that will
never be invoked by a thread in the affected set. If a deadlock occurs, use the ddelete
command to remove the barrier since deleting the barrier also releases any threads
held at the barrier.

The –stop_when_hit option tells TotalView what other threads it should
stop when a thread arrives at a barrier.

The –stop_when_done option controls the set of additional threads that
TotalView will stop when the barrier is finally satisfied. That is, you can also
stop an additional collection of threads after the last expected thread
arrives and all the threads held at the barrier are released, Normally, you
will want to stop the threads contained in the control group.

If you omit a stop option, TotalView sets the default behavior by using the
BARRIER_STOP_ALL and BARRIER_STOP_WHEN_DONE state variables. For
more information, see dset.
Version 5.0 Command Line Interface Guide 139

1

6
CLI Commands

dbarrier
The none argument for these options indicate that the CLI should not stop
additional threads.

g If –stop_when_hit is none when a thread hits a thread barrier, TotalView
just stops that thread; it does not stop other threads.

g If –stop_when_done to none, TotalView does not stop additional
threads, aside from the ones that are already stopped at the barrier.

TotalView plants the barrier point in the processes or groups specified in
the current focus. If the current focus:

g Does not indicate an explicit group, the CLI creates a process barrier
across the share group.

g Indicates a process group, the CLI creates a process barrier that is satis-
fied when all members of that group reach the barrier.

g Indicates a thread group, TotalView creates a thread barrier that is satis-
fied when all members of the group arrive at the barrier.

The following example illustrates these differences. If you set a barrier with
the focus set to a control group (which is the default), TotalView creates a
process barrier. This means that the –stop_when_hit value is set to
process even though you specified thread.

d1.<> dbarrier 580 –stop_when_hit thread
2
d1.<> ac 2
1 shared action point for group 3:

2 addr=0x120005598 [../regress/fork_loop.cxx#580]
Enabled (barrier)

Share in group: true
Stop when hit: process
Stop when done: process
process barrier; satisfaction set = group 1

However, if you create the barrier with a specific workers focus,
stop_when_hit remains set to thread:

1.<> baw 580 –stop_when_hit thread
1
d1.<> ac 1
1 unshared action point for process 1:

1 addr=0x120005598 [../regress/fork_loop.cxx#580]
Enabled (barrier)
40 Command Line Interface Guide Version 5.0

CLI Commands

dbarrier
Share in group: false
Stop when hit: thread
Stop when done: process
thread barrier; satisfaction set = group 2

Command alias:
You may find the following aliases useful:

Examples:
dbarrier 123 Stops each process in the control group when it A

arrives at line 123, it is stopped. After all arrive, the
barrier is satisfied and TotalView releases all pro-
cesses.

dfocus {p1 p2 p3} dbarrier my_proc
Holds each thread in processes 1, 2, and 3 as it arrives
at the first executable line in procedure my_proc.
After all arrive, the barrier is satisfied and TotalView
releases all processes.

dfocus gW dbarrier 642 –stop_when_hit none
Sets a thread barrier at line 642 on the workers group.
The process is continued automatically as each
thread arrives at the barrier. That is, threads that are
not at this line continue running.

Alias Definition Meaning

ba {dbarrier} Defines a barrier.

baw {dfocus pW dbarrier
–stop_when_done process}

Creates a thread barrier across
the worker threads in the pro-
cess of interest. TotalView sets
the set of threads stopped
when the barrier is satisfied to
the process containing the sat-
isfaction set.

BAW {dfocus gW dbarrier
–stop_when_done group}

Creates a thread barrier across
the worker threads in the share
group of interest. The set of
threads stopped when the bar-
rier is satisfied will be the entire
control group.
Version 5.0 Command Line Interface Guide 141

1

6
CLI Commands

dbreak
dbreak Defines a breakpoint
Format:

Creates a breakpoint at a source location

dbreak source-loc [–p | –g | –t] [[–l lang] –e expr]

Creates a breakpoint at an address

dbreak –address addr [–p | –g | –t] [[–l lang] –e expr]

Arguments:
source-loc The breakpoint location specified as a line number or

as a string containing a file name, function name, and
line number, each separated by # characters; for
example, #file#line. Defaults are constructed if you
omit parts of this specification. For more information,
see “Qualifying Symbol Names” on page 80.

–address addr The breakpoint location specified as an absolute
address in the address space of the program.

–p Tells TotalView to stop the process that hit this break-
point. You can set this option as the default by setting
the STOP_ALL state variable to process. See dset on
page 200 for more information.

–g Tells TotalView to stop all processes in the process’s
control group when the breakpoint is hit. You can set
this option as the default by setting the STOP_ALL
state variable to group. See dset on page 200 for
more information.

–t Tells TotalView to stop the thread that hit this break-
point. You can set this option as the default by setting
the STOP_ALL state variable to thread. See dset on
page 200 for more information.

–l lang Sets the programming language used when you are
entering expression expr. The languages you can enter
are c, c++, f7, f9, and asm (for C, C++, FORTRAN
77, Fortran 9x, and assembler). If you do not specify a
language, TotalView assumes that you wrote the
expression in the same language as the routine at the
breakpoint.
42 Command Line Interface Guide Version 5.0

CLI Commands

dbreak
–e expr When the breakpoint is hit, TotalView will evaluate
expression expr in the context of the thread that hit
the breakpoint. The language statements and opera-
tors you can use are described in the TOTALVIEW USERS
GUIDE.

Description:
The dbreak command defines a breakpoint or evaluation point that
TotalView triggers when execution arrives at the specified location. The ID
of the new breakpoint is returned.

Each thread stops when it arrives at a breakpoint.

Specifying a procedure name without a line number tells the CLI to set an
action point at the beginning of the procedure. If you do not name a file,
the default is the file associated with the current source location.

The CLI may not be able to set a breakpoint at the line you specify. This
occurs when a line does not contain an executable statement.

If you try to set a breakpoint on a line at which the CLI cannot stop execu-
tion, it sets one at the nearest following line where it can halt execution.

When the CLI displays information on a breakpoint’s status, it displays the
location where execution will actually stop.

If the CLI encounters a stop group breakpoint, it suspends each process in
the group as well as the process containing the triggering thread. The CLI
then shows the identifier of the triggering thread, the breakpoint location,
and the action point identifier.

One possibly confusing aspect of using expressions is that their syntax dif-
fers from that of Tcl. This is because you will need to embed code written in
Fortran, C, or assembler within Tcl commands. In addition, your expres-
sions will often include TotalView intrinsic functions. For example, if you
want to use the TotalView $tid built-in function, you will need to type it as
\$tid.
Version 5.0 Command Line Interface Guide 143

1

6
CLI Commands

dbreak
Command alias:
You may find the following aliases useful:

Examples:
For all examples, assume the current process set is d2.< when the break-
point is defined.

dbreak 12 Suspends process 2 when it reaches line 12. However,
if the STOP_ALL state variable is set to group, all
other processes in the group are stopped. In addition,
if you have set the SHARE_ACTION_POINT state vari-
able to true, the breakpoint is placed in every process
in the group.

dbreak –address 0x1000764
Suspends process 2 when address 0x1000764 is
reached.

b 12 –g Suspends all processes in the current control group
when line 12 is reached.

dbreak 57 –l f9 –e {goto $63}
Causes the thread that struck the breakpoint to trans-
fer to line 63. The host language for this statement is
Fortran 90 or Fortran 95.

dfocus p3 b 57 –e {goto $63}
In process 3, sets the same evaluation point as the
previous example.

Alias Definition Meaning

b {break} Sets a breakpoint.

bt {dbreak t} Sets a breakpoint just on the thread
of interest.
44 Command Line Interface Guide Version 5.0

CLI Commands

dcheckpoint
dcheckpoint
Creates a checkpoint image of processes (SGI only)
Format:

dcheckpoint [after_checkpointing] [–by process_set] [–no_park]
[–ask_attach_parallel | –no_attach_parallel]
[–no_preserve_ids] [–force] checkpoint-name

Arguments:
after_checkpointing Defines the state of the process both before and after

the checkpoint. Use one of the following options:

–delete Processes exit after being checkpointed.

–detach Processes continue running after being check-
pointed. In addition, TotalView detaches from them.

–go Processes continue running after being checkpointed.

–halt Processes halt after they are checkpointed.

–by process_set Indicates the set of processes that will be check-
pointed. If you do not use a process_set option,
TotalView only checkpoints the focus process. Your
options are:

ash Checkpoint the array session. (SGI only)

hid Checkpoint the hierarchy rooted in the focus process.

pgid Checkpoint the entire UNIX process group.

sid Checkpoint the entire process session.

–no_park Tells TotalView that it should not park all processes
before TotalView begins checkpointing them. If you
use this option, you will also need to use the drestart
command’s –no_unpark option. Checkpoints that will
be restarted from a shell must use this option.

–ask_attach_parallel
Asks if TotalView should reattach to parallel processes
of a parallel job. (Some systems automatically detach
you from processes being checkpointed.)

–no_attach_parallel
Tells TotalView that it should not reattach to pro-
cesses from which the checkpointing processes
detached. (Some systems automatically detach you
from processes being checkpointed.)
Version 5.0 Command Line Interface Guide 145

1

6
CLI Commands

dcheckpoint
–no_preserve_ids Lets TotalView assign new IDs when it restarts a
checkpoint. If you do not use this option, the same
IDs are used.

–force Tells TotalView to overwrite an existing checkpoint.

checkpoint-name The name being assigned to the checkpoint.

Description:
The dcheckpoint command saves program and process information. into
the checkpoint-name file. This information includes process and group IDs.
Some time later, you will use the drestart command to restart the program.

NOTE This command does not save TotalView breakpoint information.

The following restrictions exist when you are trying to checkpoint IRIX pro-
cesses.

g IRIX will not checkpoint a process that is running remotely and which
communicates using sockets. As the TotalView Server (tvdsvr) uses sock-
ets to redirect stdin, stdout, and stderr, you will need to used the drun
command to modify the way your processes send information to a tty
before creating a checkpoint.

g Because SGI MPI makes extensive use of sockets, you cannot check-
point SGI MPI programs.

The after_checkpointing options let you specify what happens after the
checkpoint operation concludes. If you do not specify an option, the CLI
tells the checkpointed processes that they should stop. This lets you
investigate a program’s state at the checkpoint position. In contrast, –go
tells the CLI that it should let the processes continue to run. The –detach
and –halt options are used less frequently. The –detach option shuts down
the CLI and leaves the processes running. The –halt option is similar to –
detach, differing only in that processes started by the CLI and TotalView
are also terminated.

The process_set options tell TotalView which processes it should checkpoint.
While the focus set can only contain one process, processes within the
same process group, process session, process hierarchy, or array session
can also be included within the same checkpoint. If you do not use one of
the –by options, TotalView only checkpoints the focus process.
46 Command Line Interface Guide Version 5.0

CLI Commands

dcheckpoint
If the focus group contains more than one process, the CLI displays an
error message.

Just before TotalView begins checkpointing your program, it temporarily
stops (that is, parks) the processes that being checkpointed. Parking
ensures that the processes do not run freely after a dcheckpoint or
drestart operation. (If they did, your code would begin running before you
get control of it.) If you will be restarting the checkpoint file outside of
TotalView, you must use the –no_park option.

On some operating systems (including SGI), the CLI detaches from pro-
cesses before they are checkpointed. By default, the CLI automatically
reattaches to them. If you want something different to occur, you can tell
the CLI that it should never reattach (–no_attach_parallel) or that it should
ask you if it should reattach (–ask_attach_parallel).

Examples:
dcheckpoint check1

Checkpoints the current process. TotalView writes the
checkpoint information into the check1 file. These pro-
cesses stop.

f3 dcheckpoint check1
Checkpoints process 3. Process 3 stops. TotalView
writes the checkpoint information into the check1 file.

f3 dcheckpoint –go check1
Checkpoints process 3. Process 3 continues to run.
TotalView writes the checkpoint information is into
the check1 file.

f3 dcheckpoint –by pgid –detach check1
Checkpoints process 3 and all other processes in the
same UNIX process group. All of the checkpointed
processes continuing running but they run detached
from the CLI. TotalView writes the checkpoint informa-
tion into the check1 file.
Version 5.0 Command Line Interface Guide 147

1

6
CLI Commands

dcont
dcont Continues execution and waits for execution to stop
Format:

dcont

Description:
The dcont command continues all processes and threads in the current
focus and then waits for all of them to stop.

This command is a Tcl macro whose definition is as follows:

proc dcont {args} {uplevel “dgo; dwait $args“}

This behavior is often what you want to do in scripts. It is seldom what you
want to do interactively.

NOTE You can interrupt this action by typing Ctrl-C. This tells TotalView to stop exe-
cuting these processes.

A dcont command completes when all threads in the focus set of pro-
cesses stop executing.

Command alias:
You may find the following aliases useful:

Examples:
dcont Resumes execution of all stopped/runnable threads

belonging to processes in the current focus. (Threads
held at barriers are not affected.) The command
blocks further input until all threads in all target pro-
cesses stop. After the CLI displays its prompt, you can
enter additional commands.

dfocus p1 dcont Resumes execution of all stopped/runnable threads
belonging to process 1. The CLI does not accept addi-
tional commands until the process stops.

Alias Definition Meaning

co {dcont} Resume.

CO {dfocus g dcont} Group-level resume.
48 Command Line Interface Guide Version 5.0

CLI Commands

dcont
dfocus {p1 p2 p3} co
Resumes execution of all stopped/runnable threads
belonging to processes 1, 2, and 3.

CO Resumes execution of all stopped/runnable threads
belonging to the current group.
Version 5.0 Command Line Interface Guide 149

1

6
CLI Commands

ddelete
ddelete Deletes action points
Format:

Deletes some action points

ddelete action-point-list

Deletes all action points

ddelete –a

Arguments:
action-point-list A list of the action points being deleted.

–a Tells TotalView to delete all action points in the cur-
rent focus.

Description:
The ddelete command permanently removes one or more action points.
The argument to this command lets you specify which action points the
CLI should delete. The –a option indicates that the CLI should delete all
action points.

If you delete a barrier point, the CLI releases the processes and threads
held at it.

Command alias:
You may find the following alias useful:

Examples:
ddelete 1 2 3 Deletes breakpoints 1, 2, and 3.

ddelete –a Deletes all action points associated with processes in
the current focus.

dfocus {p1 p2 p3 p4} ddelete –a
Deletes all the breakpoints associated with processes
1 through 4. Breakpoints associated with other
threads are not affected.

dfocus a de –a Deletes all action points known to the CLI.

Alias Definition Meaning

de {ddelete} Deletes action points.
50 Command Line Interface Guide Version 5.0

CLI Commands

ddetach
ddetach Detaches from processes
Format:

ddetach

Description:
The ddetach command detaches the CLI from all processes in the current
focus. This undoes the effects of attaching the CLI to a running process; that
is, the CLI releases all control over the process, eliminates all debugger
state information related to it (including action points), and allows the pro-
cess to continue executing in the normal run-time environment.

You can detach any process controlled by the CLI; the process being
detached does not have to be originally loaded with a dattach command.

After this command executes, you are no longer able to access program
variables, source location, action point settings, or other information
related to the detached process.

If a single thread serves as the set, the CLI detaches the process containing
the thread.

Command alias:
You may find the following alias useful:

Examples:
ddetach Detaches the process or processes that are in the cur-

rent focus.

dfocus {p4 p5 p6} det
Detaches processes 4, 5, and 6.

dfocus g2 det Detaches all processes in the control group associ-
ated with process 2.

Alias Definition Meaning

det {ddetach} Detaches from processes.
Version 5.0 Command Line Interface Guide 151

1

6
CLI Commands

ddisable
ddisable Temporarily disables action points
Format:

Disables some action points

ddisable action-point-list

Disables all action points

ddisable –a

Arguments:
action-point-list A list of the action points being disabled.

–a Tells TotalView to disable all action points.

Description:
The ddisable command temporarily deactivates action points. This com-
mand does not, however, delete them.

The first form of this command lets you explicitly name the IDs of the
action points being disabled. The second form lets you disable all action
points.

Command alias:
You may find the following alias useful:

Examples:
ddisable 3 7 Disables the action points whose IDs are 3 and 7.

di –a Disables all action points in the current focus.

dfocus {p1 p2 p3 p4} ddisable –a
Disables action points associated with processes 1
through 4. Action points associated with other pro-
cesses are not affected.

Alias Definition Meaning

di {ddisable} Temporarily disables action points
52 Command Line Interface Guide Version 5.0

CLI Commands

ddown
ddown Moves down the call stack
Format:

ddown [num-levels]

Arguments:
num-levels Number of levels to move down. The default is 1.

Description:
The ddown command moves the selected stack frame down one or more
levels. It also prints the new frame’s number and function name.

Call stack movements are all relative, so ddown effectively “moves down”
in the call stack. (If “up” is in the direction of main(), then “down” is back
from where you started moving through stack frames.)

Frame 0 is the most recent—that is, the currently executing—frame in the
call stack, frame 1 corresponds to the procedure that invoked the currently
executing one, and so on. The call stack’s depth is increased by one each
time a procedure is entered, and decreased by one when it is exited.

The command affects each thread in the focus. You can specify any collec-
tion of processes and threads as the target set.

In addition, the ddown command modifies the current list location to be
the current execution location for the new frame; this means that a dlist
command displays the code surrounding this new location.

The context and scope changes made by this command remain in effect
until the CLI executes a command that modifies the current execution
location (for example, dstep), or until you enter a dup or ddown com-
mand.

If you tell the CLI to move down more levels than exist, the CLI simply
moves down to the lowest level in the stack (which was the place where
you began moving through the stack frames).

Command alias:
You may find the following alias useful:

Alias Definition Meaning

d {ddown} Moves down the call stack
Version 5.0 Command Line Interface Guide 153

1

6
CLI Commands

ddown
Examples:
ddown Moves down one level in the call stack. As a result, for

example, dlist commands that follow will refer to the
procedure that invoked this one. Here is an example
of what is printed after you enter this command:

0 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays.F#48]

d 5 Moves the current frame down five levels in the call
stack.
54 Command Line Interface Guide Version 5.0

CLI Commands

dec2hex
dec2hex Converts a decimal number into hexadecimal
Format:

TV::dec2hex number

Arguments:
number A decimal number.

Description:
Converts a decimal number into hexadecimal. This command correctly
manipulates 64-bit values, regardless of the size of a long on the host sys-
tem.
Version 5.0 Command Line Interface Guide 155

1

6
CLI Commands

denable
denable Enables action points
Format:

Enables some action points

denable action-point-list

Enables all disabled action points in the current focus

denable –a

Arguments:
action-point-list The identifiers of the action points being enabled.

–a Tells TotalView to enable all action points.

Description:
The denable command reactivates action points that you had previously
disabled with the ddisable command. The –a option tells the CLI to enable
all action points in the current focus.

If you have not saved the ID values of disabled action points, you can use
the dactions command to obtain a list of this information.

Command alias:
You may find the following alias useful:

Examples:
denable 3 4 Enables two previously identified action points. These

action points were previously disabled with the
ddisable command.

dfocus {p1 p2} denable –a
Enables all action points associated with processes 1
and 2. Settings associated with other processes are
not affected.

en –a Enables all action points associated with the current
focus.

f a en –a Enables all actions points in all processes.

Alias Definition Meaning

en {denable} Reenables action points
56 Command Line Interface Guide Version 5.0

CLI Commands

dfocus
dfocus Changes the current Process/Thread set
Format:

Changes the target of future CLI commands to this P/T set

dfocus p/t-set

Executes a command in this P/T set

dfocus p/t-set command

Arguments:
p/t-set A set of processes and threads. This set defines the

target upon which the CLI commands that follow will
act. You can also use a P/T set filter as one or more of
the elements in this list.

command A CLI command, which when it executes, operates
upon its own local focus.

Description:
The dfocus command changes the set of processes, threads, and groups
upon which a command will act. This command can change the focus for
all commands that follow or just the command that immediately follows.

The dfocus command always expects a P/T value as its first argument. This
value can either be a single arena specifier or a list of arena specifiers. The
default focus is d1.<, which selects the first user thread. The d (for default)
indicates that each CLI command is free to use its own default width.

If you enter an optional command, the focus is set temporarily, and the CLI
executes command in the new focus. After command executes, the CLI
restores focus to its original value. The command argument can be a single
command or a list.

If you use a command argument, dfocus returns the result of the command.
If you do not enter a command, dfocus returns the focus as a string value.

NOTE Instead of a P/T set, you can type a P/T set expression. These expressions are
described in “P/T Set Expressions” on page 63.
Version 5.0 Command Line Interface Guide 157

1

6
CLI Commands

dfocus
Command alias:
You may find the following alias useful:

Examples:
dfocus g dgo Continues the TotalView group containing the focus

process.

dfocus p3 {dhalt; dwhere}
Stops process 3 and displays backtraces for each of
its threads.

dfocus 2.3 Sets the focus to thread 3 of process 2, where the “2”
and the “3” are TotalView’s process and thread identi-
fier values. The focus is set to d2.3.

dfocus 3.2
dfocus .5 Sets, then resets command focus. A focus command

that includes a dot and omits the process value tells
the CLI to use the current process. Thus, this
sequence of commands changes the focus to process 3,
thread 5 (d3.5).

dfocus g dstep Steps the current group. Note that while the thread of
interest is determined by the current focus, the com-
mand acts on the entire group containing that thread.

dfocus {p2 p3} {dwhere ; dgo}
Performs a backtrace on all threads in processes 2
and 3 and then tells these processes to execute.

f 2.3 {f p w; f t s; g}
Executes a backtrace (dwhere) on all the threads in
process 2, steps thread 3 in process 2 (without run-
ning any other threads in the process), and continues
the process.

dfocus p1 Changes the current focus to include just those
threads currently in process 1. The width is set to
process. The CLI sets the prompt to p1.<.

Alias Definition Meaning

f {dfocus} Changes object upon which a com-
mand acts.
58 Command Line Interface Guide Version 5.0

CLI Commands

dfocus
dfocus a Changes the current set to include all threads in all
processes. When you execute this command, you will
notice that your prompt changes to a1.<. This com-
mand alters the CLI’s behavior so that actions that
previously operated on a thread now apply to all
threads in all processes.

dfocus gW dstatus Displays the status of all worker threads in the control
group. The width is group level and the target is the
workers group.

dfocus pW dstatus Displays the status of all worker threads in the current
focus process. The width is process level and the tar-
get is the workers group.

f {breakpoint(a) | watchpoint(a)} st
Shows all threads that are stopped at breakpoints or
watchpoints.

f {stopped(a) – breakpoint(a)} st
Shows all stopped threads that are not stopped at
breakpoints.

You will find many other dfocus examples in Chapter 3, “Groups, Pro-
cesses, and Threads” on page 15.
Version 5.0 Command Line Interface Guide 159

1

6
CLI Commands

dgo
dgo Resumes execution of processes
Format:

dgo

Description:
The dgo command tells all non-held processes and threads in the current
focus to resume execution. If the process does not exist, this command
creates it, passing it the default command arguments. These can be argu-
ments passed into the CLI or they can be the arguments set with the
drerun command. If you are also using the TotalView GUI, this value can be
set by using the Process > Startup command.

This command has no arguments.

If a process or thread is held, it ignores this command.

You cannot use a dgo command when you are debugging a core file, nor
can you use it before the CLI loads an executable and starts executing it.

Command alias:
You may find the following aliases useful:

Examples:
dgo Resumes execution of all stopped/runnable threads

belonging to processes in the current focus. (Threads
held at barriers are not affected.)

G Resumes execution of all threads in the current con-
trol group.

f p g Continues the current process. Only threads that are
not held are actually allowed to run.

f g g Continues all processes in the control group. Only
processes and threads that are not held are allowed
to run.

f gL g Continues all threads in the share group that are at
the same PC as the thread of interest.

Alias Definition Meaning

g {dgo} Resumes execution.

G {dfocus g dgo} Group resume.
60 Command Line Interface Guide Version 5.0

CLI Commands

dgo
f pL g Continues all threads in the current process that are
at the same PC as the thread of interest.

f t g Continues a single thread.
Version 5.0 Command Line Interface Guide 161

1

6
CLI Commands

dgroups
dgroups Manipulates and manages groups
Format:

Adds members to thread and process groups

dgroups –add [–g gid] [id-list]

Deletes groups

dgroups –delete [–g gid]

Intersects a group with a list of processes and threads

dgroups –intersect [–g gid] [id-list]

Prints process and thread group information

dgroups [–list] [pattern-list]

Creates a new thread or process group

dgroups –new [thread_or_process] [–g gid] [id-list]

Removes members from thread or process groups

dgroups –remove [–g gid] [id-list]

Arguments:
–g gid The group ID upon which the command operates. gid

can be an existing numeric group ID, an existing group
name, or, if you are using the –new option, a new
group name.

id-list A Tcl list containing process and thread IDs. Process
IDs are integers; for example, “2” indicates process 2.
Thread IDs define a pid.tid pair and look like decimal
numbers; for example, “2.3” indicates process 2,
thread 3. If the first element of this list is a group tag
such as the word control, the CLI ignores it. This
makes it easy to insert all members of an existing
group as the items to be used in any of these opera-
tions. (See the dset command’s discussion of the
GROUP(gid) variable for information on group desig-
nators.) These words appear in some circumstances
when TotalView returns lists of elements in P/T sets.

thread_or_process Keywords indicating that TotalView will create a new
process or thread group. You can specify one of the
following arguments: t, thread, p, or process.
62 Command Line Interface Guide Version 5.0

CLI Commands

dgroups
pattern-list A pattern to be matched against group names. The
pattern is a Tcl regular expression

Description:
The dgroups command lets you perform the following functions:

g Adds members to process and thread groups.

g Creates a group.

g Intersects a group with a set of processes and threads.

g Deletes groups.

g Displays the name and contents of groups.

g Removes members from a group.

dgroups –add
The dgroups –add command adds members to one or more thread or pro-
cess groups. TotalView adds each of these threads and processes to the
group. If you add a:

g Process to a thread group, TotalView adds all of its threads.

g Thread to a process group, it adds the thread’s parent process.

You can abbreviate –add to –a.

The CLI returns the ID of this group.

The items being added can be explicitly named using an id-list. If you do
not use an id-list, the CLI adds the threads and processes in the current
focus. Similarly, you can name the group to which the CLI adds members if
you use the –g option. If you omit this option, the CLI uses the groups in
the current focus.

If id-list contains processes and the target is a thread group, the CLI adds
all threads from these processes. If it contains threads and the target is a
process group, TotalView adds the parent process for each thread.

NOTE If you specify an id-list and use the –g option, the CLI ignores the focus.

Even if you try to add the same object more than once to a group, the CLI
only adds it once.
Version 5.0 Command Line Interface Guide 163

1

6
CLI Commands

dgroups
TotalView does not let you use this command to add a process to a control
group. If you need to perform this operation, you can add it by using the
CGROUP(dpid) variable. For example:

dset CGROUP($mypid) $new_group_id

dgroups –delete
The dgroups –delete command deletes the target group. You can only
delete groups that you create; you cannot delete groups that TotalView
creates.

dgroups –intersect
The dgroups –intersect command intersects a group with a set of pro-
cesses and threads. If you intersect a thread group with a process, the CLI
uses all of the process’s threads. If you intersect a process group with a
thread, the CLI uses the thread’s process.

After this command executes, the group no longer contains members that
were not in this intersection.

You can abbreviate –intersect to –i.

dgroups –list
The dgroups –list command prints the name and contents of process and
thread groups. If you specify a pattern-list as an argument, the CLI only
prints information about groups whose names match this pattern.

When entering a list, you can specify a pattern. The CLI matches this pattern
against TotalView’s list of group names by using the Tcl regex command.

NOTE If you do not enter a pattern, the CLI only displays groups that you have cre-
ated which have nonnumeric names.

The CLI returns information from this command; it is not returned.

You can abbreviate –list to –l.
64 Command Line Interface Guide Version 5.0

CLI Commands

dgroups
dgroups –new
The dgroups –new command creates a new thread or process group and
adds threads and processes to it. If you use a name with –g, the CLI uses
that name for the group ID; otherwise, it assigns a new numeric ID. If the
group you name already exists, the CLI replaces it with the newly created
group.

The CLI returns the ID of the newly created group.

The items being added can be explicitly named using an id-list. If you do
not use an id-list, the CLI adds the threads and processes in the current
focus.

If id-list contains processes and the target is a thread group, the CLI adds
all threads from these processes. If it contains threads and the target is a
process group, TotalView adds the parent process for each thread.

NOTE If you specify an id-list and use the –g option, the CLI ignores the focus.

If you are adding more than one object and one of these objects is a dupli-
cate, TotalView will add the non-duplicate objects to the group.

You can abbreviate –new to –n.

dgroups –remove
The dgroups –remove command removes members from one or more
thread or process groups. If you ask to remove a process from a thread
group, TotalView removes all of its threads. If you ask to remove a thread
from a process group, TotalView removes its parent process.

You cannot remove processes from a control group. You can, however,
move a process from one control group to another by using the dset com-
mand to assign it to the CGROUP(dpid) variable group.

Also, you cannot use this command on readonly groups such as share
groups.

You can abbreviate –remove to –r.
Version 5.0 Command Line Interface Guide 165

1

6
CLI Commands

dgroups
Command alias:
You may find the following alias useful:

Examples:

dgroups –add
f tW gr –add Adds the focus thread to its workers group.

dgroups –add Adds the current focus thread to the current focus
group.

set gid [dgroups –new thread ($CGROUP(1))]
Creates a new thread group containing all threads
from all processes in the control group for process 1.

f $a_group/9 dgroups –add
Adds process 9 to a user-defined group.

dgroups –delete
gr –delete –g mygroup

Deletes mygroup.

dgroups –intersect
dgroups –intersect –g 3 3.2

Intersects thread 3.2 with group 3. If group 3 is a
thread group, this command removes all threads
except 3.2 from it; if it is a process group, this com-
mand removes all processes except process 3 from it.

f tW gr –i
Intersects the focus thread with its workers group.

f gW gr –i –g mygroup
Removes all nonworker threads from mygroup.

dgroups –list
dgroups –list Tells TotalView to display information about all named

groups. For example:

ODD_P: {process 1 3}
EVEN_P: {process 2 4}

Alias Definition Meaning

gr dgroups Manipulates a group.
66 Command Line Interface Guide Version 5.0

CLI Commands

dgroups
gr –l * Tells TotalView to display information about groups in
the current focus.

1: {control 1 2 3 4}
2: {workers 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 \

3.2 3.3 3.4 4.1 4.2 4.3 4.4}
3: {share 1 2 3 4}
ODD_P: {process 1 3}
EVEN_P: {process 2 4}

dgroups –new
gr –n t –g mygroup $GROUP($CGROUP(1))

Creates a new thread group named mygroup contain-
ing all threads from all processes in the control group
for process 1.

set mygroup [dgroups –new]
Creates a new process group that contains the current
focus process.

dgroups –remove
dgroups –remove –g 3 3.2

Removes thread 3.2 from group 3.

f W dgroups –add Marks the current thread as being a worker thread.

f W dgroups –r Indicates that the current thread is not a workers
thread.
Version 5.0 Command Line Interface Guide 167

1

6
CLI Commands

dhalt
dhalt Suspends execution of processes
Format:

dhalt

Description:
The dhalt command stops all processes and threads in the current focus.
The command has no arguments.

Command alias:
You may find the following aliases useful:

Examples:
dhalt Suspends execution of all running threads belonging

to processes in the current focus. (Threads that are
held at barriers are not affected.)

f t 1.1 h Suspends execution of thread 1 in process 1. Note the
difference between this command and f 1.< dhalt. If
the focus is set as thread level, this command will halt
the first user thread, which is probably thread 1.

Alias Definition Meaning

h {dhalt} Suspends execution

H {dfocus g dhalt} Group stop
68 Command Line Interface Guide Version 5.0

CLI Commands

dhold
dhold Holds threads or processes
Format:

Holds processes

dhold –process

Holds threads

dhold –thread

Arguments:
–process Indicates that processes in the current focus will be

held. You can abbreviate –process to –p.

–thread Indicates that threads in the current focus will be
held. You can abbreviate –thread to –t.

Description:
The dhold command holds the threads and processes in the current focus.

NOTE You cannot hold system manager threads.

Command alias:
You may find the following aliases useful:

Examples:
f W HT Holds all worker threads in the focus group.

f s HP Holds all processes in the share group.

f $mygroup/ HP Holds all processes in the group identified by the con-
tents of mygroup.

Alias Definition Meaning

hp {dhold –process} Holds the focus process.

HP {f g dhold –process} Holds all processes in the focus group.

ht {f t dhold –thread} Holds the focus thread.

HT {f g dhold –thread} Holds all threads in the focus group.

htp {f p dhold –thread} Holds all threads in the focus process.
Version 5.0 Command Line Interface Guide 169

1

6
CLI Commands

dkill
dkill Terminates execution of processes
Format:

dkill

Description:
The dkill command terminates all processes in the current focus.

This command has no arguments.

Because the executables associated with the defined processes are still
“loaded,” typing the drun command restarts the processes.

The dkill command alters program state by terminating all processes in the
affected set. In addition, TotalView destroys any spawned processes when
the process that created them is killed. The drun command can only
restart the initial process.

Command alias:
You may find the following aliases useful:

Examples:
dkill Terminates all threads belonging to processes in the

current focus.

dfocus {p1 p3} dkill
Terminates all threads belonging to processes 1 and 3.

Alias Definition Meaning

k {dkill} Terminates a process’s execution
70 Command Line Interface Guide Version 5.0

CLI Commands

dlappend
dlappend Appends lists elements to a TotalView variable
Format:

dlappend variable-name value [...]

Arguments:
variable-name The variable to which values are being appended.

value The values being appended.

Description:
The dlappend command appends list elements to a TotalView debugger
variable. The dlappend command performs the same functions as the Tcl
lappend command, differing in that dlappend will not create a new debug-
ger variable. That is, the following Tcl command creates a variable named
foo:

lappend foo 1 3 5

In contrast, the following command displays an error message:

dlappend foo 1 3 5

Examples:
dlappend TV::process_load_callbacks my_load_callback

Adds the my_load_callback function to the list of
functions in the process_load_callbacks variable.
Version 5.0 Command Line Interface Guide 171

1

6
CLI Commands

dlist
dlist Displays source code lines
Format:

Displays code relative to the current list location

dlist [–n num-lines]

Displays code relative to a named place

dlist source-loc [–n num-lines]

Displays code relative to the current execution location

dlist –e [–n num-lines]

Arguments:
–n num-lines Requests that this number of lines be displayed rather

than the default value. (The default is the value of the
MAX_LIST variable.) If num-lines is negative, lines
before the current location are shown, and additional
dlist commands will show preceding lines in the file
rather than succeeding lines. For more information,
see dset on page 200.

This option also sets the value of the MAX_LIST vari-
able to num-lines.

source-loc Sets the location at which the CLI begins displaying
information. This location is specified as a line num-
ber or as a string containing a file name, function
name, and line number, each separated by # charac-
ters. For example: file#func#line. For more informa-
tion, see “Qualifying Symbol Names” on page 80.
Defaults are constructed if you omit parts of this
specification.

–e Sets the display location to include the current execu-
tion point of the thread of interest. If you used dup
and ddown commands to select a buried stack frame,
this location includes the PC (program counter) for
that stack frame.

Description:
The dlist command displays lines relative to a place in the source code.
(This position is called the list location.) The CLI prints this information; it is
not returned. If neither source-loc nor –e is specified, the command contin-
72 Command Line Interface Guide Version 5.0

CLI Commands

dlist
ues where the previous list command left off. To display the thread’s exe-
cution point, use dlist –e.

If you enter a file or procedure name, the listing begins at the file or proce-
dure’s first line.

The first time you use the dlist command after you focus on a different
thread—or after the focus thread runs and stops again—the location
changes to include the current execution point of the new focus thread.

Tabs in the source file are expanded as blanks in the output. The tab stop
width is controlled by the TAB_WIDTH variable, which has a default value
of 8. If TAB_WIDTH is set to –1, no tab processing is done, and tabs are
displayed using their ASCII value.

All lines are shown with a line number and the source text for the line. The
following symbols are also used:

@ An action point is set at this line.

> The PC for the current stack frame is at the indicated line and this
is the leaf frame.

= The PC for the current stack frame is at the indicated line and this
is a buried frame; this frame has called another function so that
this frame is not the active frame.

These correspond to the marks shown in the backtrace displayed by
dwhere that indicates the selected frame.

Here are some general rules:

g The initial display location is main().

g The display location is set to the current execution location when the
focus is on a different thread.

If the source-loc argument is not fully qualified, the CLI looks for it in the
directories named in the CLI EXECUTABLE_PATH state variable.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

l {dlist} Displays lines
Version 5.0 Command Line Interface Guide 173

1

6
CLI Commands

dlist
Examples:
These examples assume that MAX_LIST is at its initial value of 20.

dlist Displays 20 lines of source code, beginning at the cur-
rent list location. The list location is incremented by
20 when the command completes.

dlist 10 Displays 20 lines, starting with line 10 of the file corre-
sponding to the current list location. Because an
explicit value was used, the CLI ignores the previous
command. The list location is changed to line 30.

dlist –n 10 Displays 10 lines, starting with the current list loca-
tion. The value of the list location is incremented by
10.

dlist –n –50 Displays source code preceding the current list loca-
tion; 50 lines are shown, ending with the current
source code location. The list location is decremented
by 50.

dlist do_it Displays 20 lines in procedure do_it. The list location
is changed so that it is the 20th line of the procedure.

dfocus 2.< dlist do_it
Displays 20 lines in the routine do_it associated with
process 2. If the current source file were named foo,
this could also be specified as dlist foo#do_it, nam-
ing the executable for process 2.

dlist –e Displays 20 lines starting 10 lines above the current
execution location.

f 1.2 l –e Lists the lines around the current execution location
of thread 2 in process 1.

dfocus 1.2 dlist –e –n 10
Produces essentially the same listing as the previous
example, differing in that 10 lines are displayed.

dlist do_it.f#80 –n 10
Displays 10 lines, starting with line 80 in file do_it.f.
The list location is updated to line 90.
74 Command Line Interface Guide Version 5.0

CLI Commands

dload
dload Loads debugging information
Format:

dload [–g gid] [–r hname] [–e] executable

Arguments:
–g gid Sets the control group for the process being added to

the group ID specified by gid. This group must already
exist. (The CLI GROUPS variable contains a list of all
groups.)

–r hname The host on which the process will run. The CLI will
launch a TotalView Debugger Server on the host ma-
chine if one is not already running there. See Chapter
5 of the TOTALVIEW USER GUIDE for information on the
server launch commands.

–e Tells the CLI that the next argument is a file name. You
need to use this argument if the file name begins with
a dash or only uses numeric characters.

executable A fully or partially qualified file name for the file corre-
sponding to the program.

Description:
The dload command creates a new TotalView process object for executable.
The dload command returns the TotalView ID for the new object.

Command alias:
You may find the following alias useful:

Examples:
dload do_this Loads the debugging information for executable

do_this into the CLI. After this command completes,
the process does not yet exist and no address space
or memory is allocated to it.

lo –g 3 –r other_computer do_this
Loads the debugging information for executable
do_this executing on the other_computer machine
into the CLI. This process is placed into group 3.

Alias Definition Meaning

lo {dload} Loads debugging information
Version 5.0 Command Line Interface Guide 175

1

6
CLI Commands

dload
f g3 lo –r other_computer do_this
Does not do what you would expect it to do because
the dload command ignores the focus command.

dload –g $CGROUP(2) –r slowhost foo
Loads another process based on image foo on
machine slowhost. TotalView places this process in
the same group as process 2.
76 Command Line Interface Guide Version 5.0

CLI Commands

dnext
dnext Steps source lines, stepping over subroutines
Format:

dnext [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of source lines to be executed.

The dnext command executes source lines; that is, it advances the pro-
gram by steps (source line statements). However, if a statement in a source
line invokes a routine, dnext executes the routine as if it were one state-
ment; that is, it steps over the call.

The optional num-steps argument tells the CLI how many dnext operations
it should perform. If you do not specify num-steps, the default is 1.

The dnext command iterates over the arenas in its focus set, performing a
thread-level, process-level, or group-level step in each arena, depending
on the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on
page 211.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

n {dnext} Runs the thread of interest one statement
while allowing other threads in the process
to run.

N {dfocus g dnext} A group stepping command. This searches
for threads in the share group that are at the
same PC as the thread of interest, and steps
one such “aligned” thread in each member
one statement. The rest of the control group
runs freely.
Version 5.0 Command Line Interface Guide 177

1

6
CLI Commands

dnext
Examples:
dnext Steps one source line.

n 10 Steps ten source line.

N Steps one source line. It also runs all other processes
in the group that are in the same lockstep group to
the same line.

nl {dfocus L dnext} Steps the process threads in “lockstep”. This
steps the thread of interest one statement
and runs all threads in the process that are
at the same PC as the thread of interest to
the same statement. Other threads in the
process run freely. The group of threads that
are at the same PC is called the lockstep group.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

NL {dfocus gL dnext} Steps “lockstep” threads in the group. This
steps all threads in the share group that are
at the same PC as the thread of interest one
statement. Other threads in the control
group run freely.

nw {dfocus W dnext} Steps worker threads in the process. This
steps the thread of interest one statement,
and runs all worker threads in the process to
the same (goal) statement. The nonworker
threads in the process run freely.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

NW {dfocus gW dnext} Steps worker threads in the group. This steps
the thread of interest one statement, and
runs all worker threads in the same share
group to the same statement. All other
threads in the control group run freely.

Alias Definition Meaning
78 Command Line Interface Guide Version 5.0

CLI Commands

dnext
f t n Steps the thread one statement.

dfocus 3. dnext Steps process 3 one step.
Version 5.0 Command Line Interface Guide 179

1

6
CLI Commands

dnexti
dnexti Steps machine instructions, stepping over subroutines
Format:

dnexti [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of instructions to be executed.

Description:
The dnexti command executes machine-level instructions; that is, it
advances the program by a single instruction. However, if the instruction
invokes a subfunction, dnexti executes the subfunction as if it were one
instruction; that is, it steps over the call. This command steps the thread of
interest while allowing other threads in the process to run.

The optional num-steps argument tells the CLI how many dnexti operations
it should perform. If you do not specify num-steps, the default is 1.

The dnexti command iterates over the arenas in the focus set, performing
a thread-level, process-level, or group-level step in each arena, depending
on the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on
page 211.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

ni {dnexti} Runs the thread of interest one instruction
while allowing other threads in the process
to run.

NI {dfocus g dnexti} A group stepping command. This searches
for threads in the share group that are at the
same PC as the thread of interest, and steps
one such “aligned” thread in each member
one instruction. The rest of the control
group runs freely.
80 Command Line Interface Guide Version 5.0

CLI Commands

dnexti
Examples:
dnexti Steps one machine-level instruction.

ni 10 Steps ten machine-level instructions.

NI Steps one instruction and runs all other processes in
the group that were executing at that instruction to
the next instruction as well.

nil {dfocus L dnexti} Steps the process threads in “lockstep”. This
steps the thread of interest one instruction,
and runs all threads in the process that are
at the same PC as the thread of interest to
the same statement. Other threads in the
process run freely. The group of threads that
are at the same PC is called the lockstep group.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

NIL {dfocus gL dnexti} Steps “lockstep” threads in the group. This
steps all threads in the share group that are
at the same PC as the thread of interest one
instruction. Other threads in the control
group run freely.

niw {dfocus W dnexti} Steps worker threads in the process. This
steps the thread of interest one instruction,
and runs all worker threads in the process to
the same (goal) statement. The nonworker
threads in the process run freely.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

NIW {dfocus gW dnexti} Steps worker threads in the group. This steps
the thread of interest one instruction, and
runs all worker threads in the same share
group to the same statement. All other
threads in the control group run freely.

Alias Definition Meaning
Version 5.0 Command Line Interface Guide 181

1

6
CLI Commands

dnexti
f t n Steps the thread one machine-level instruction.

dfocus 3. dnexti Steps process 3 one machine-level instruction.
82 Command Line Interface Guide Version 5.0

CLI Commands

dout
dout Runs out from the current subroutine
Format:

dout [frame-count]

Arguments:
frame-count Specifies that the thread returns out of this many lev-

els of subroutine calls. If this number is omitted, the
thread returns from the current level.

Description:
The dout command runs a thread until it returns:

g From the current subroutine.

g From one or more nested subroutines.

When process width is specified, TotalView allows all threads in the process
that are not running to this goal to run free. Note that specifying process
width is the default.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

ou {dout} Runs the thread of interest out of the current
function while allowing other threads in the
process to run.

OU {dfocus g dout} A group stepping command. This searches
for threads in the share group that are at the
same PC as the thread of interest, and runs
one such “aligned” thread in each member
out of the current function. The rest of the
control group runs freely.
Version 5.0 Command Line Interface Guide 183

1

6
CLI Commands

dout
For additional information on the different kinds of stepping, see the dstep
command information.

oul {dfocus L dout} Runs the process threads in “lockstep”. This
runs the thread of interest out of the current
function, and also runs all threads in the
process that are at the same PC as the
thread of interest out of the current func-
tion. Other threads in the process run freely.
The group of threads that are at the same PC
is called the lockstep group.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

OUL {dfocus gL dout} Runs “lockstep” threads in the group. This
runs all threads in the share group that are at
the same PC as the thread of interest out of
the current function. Other threads in the
control group run freely.

ouw {dfocus W dout} Runs worker threads in the process. This
runs the thread of interest out of the current
function and runs all worker threads in the
process to the same (goal) statement. The
nonworker threads in the process run freely.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

OUW {dfocus gW dout} Runs worker threads in the group. This runs
the thread of interest out of the current
function and also runs all worker threads in
the same share group out of the current
function. All other threads in the control
group run freely.

Alias Definition Meaning
84 Command Line Interface Guide Version 5.0

CLI Commands

dout
Examples:
f t ou Runs the current thread of interest out of the current

subroutine.

f p dout 3 Unwinds the process in the current focus out of the
current subroutine to the routine three levels above it
in the call stack.
Version 5.0 Command Line Interface Guide 185

1

6
CLI Commands

dprint
dprint Evaluates and displays information
Format:

Prints the value of a variable

dprint variable

Prints the value of an expression

dprint expression

Arguments:
variable A variable whose value will be displayed. The variable

can be local to the current stack frame or it can be
global. If the variable being displayed is an array, you
can qualify the variable’s name with a slice that tells
the CLI to display a portion of the array,

expression A source-language expression to be evaluated and
printed. Because expression must also conform to Tcl
syntax, you must place it within quotes if it includes
any blanks, and it must be enclosed in braces ({}) if it
includes brackets ([]), dollar signs ($), quote charac-
ters ("), or any other Tcl special characters.

expression cannot contain calls to assembler, Fortran,
C, or C++ functions.

Description:
The dprint command evaluates and displays a variable or an expression.
The CLI interprets the expression by looking up the values associated with
each symbol and applying the operators. The result of an expression can
be a scalar value or an aggregate (array, array slice, or structure).

As the CLI displays data, it passes the data through a simple more process
that prompts you after each screen of text is displayed. After a screen of
data is displayed, you can press the Enter key to tell the CLI to continue
displaying information. Entering q tells the CLI to stop printing this infor-
mation.

Since the dprint command can generate a considerable amount of output,
you may want to use the capture command described on page 128 to save
the output into a variable.
86 Command Line Interface Guide Version 5.0

CLI Commands

dprint
Structure output appears with one field printed per line. For example:

sbfo = {
 f3 = 0x03 (3)
 f4 = 0x04 (4)
 f5 = 0x05 (5)
 f20 = 0x000014 (20)
 f32 = 0x00000020 (32)
}

Arrays are printed in a similar manner. For example:

foo = {
 [0][0] = 0x00000000 (0)
 [0][1] = 0x00000004 (4)
 [1][0] = 0x00000001 (1)
 [1][1] = 0x00000005 (5)
 [2][0] = 0x00000002 (2)
 [2][1] = 0x00000006 (6)
 [3][0] = 0x00000003 (3)
 [3][1] = 0x00000007 (7)
}

You can append a slice to the variable’s name to tell the CLI that it should
display a portion of an array. For example:

d1,<> p {master_array[::10]}
master_array(::10) = {
(1) = 1 (0x00000001)
(11) = 1331 (0x00000533)
(21) = 9261 (0x0000242d)
(31) = 29791 (0x0000745f)
(41) = 68921 (0x00010d39)
(51) = 132651 (0x0002062b)
(61) = 226981 (0x000376a5)
(71) = 357911 (0x00057617)
(81) = 531441 (0x00081bf1)
(91) = 753571 (0x000b7fa3)

}

Note that the slice was placed within {} symbols. This prevents Tcl from
trying to evaluate the information within the [] characters. You could, of
course, escape the brackets; for example, \[\].
Version 5.0 Command Line Interface Guide 187

1

6
CLI Commands

dprint
The CLI evaluates the expression or variable in the context of each thread
in the target focus. Thus, the overall format of dprint output is as follows:

first process/thread group:
expression result

second process/thread group:
expression result

...

last process/thread group:
expression result

You can also use the dprint command to obtain values for your computer’s
registers. For example, on most architectures, $r1 is register 1. You would
obtain the contents of this registering by typing:

dprint \$r1

Notice that you must escape the $ since the name of the register includes
the $. This $ is not the standard indicator that tells Tcl to fetch a variable’s
value. Appendix C, Architectures, in the TOTALVIEW USERS GUIDE lists the
mnemonic names assigned to registers.

NOTE You do not need a $ when asking dprint to display your program’s variables.
For example, “$\$r1” looks for a Tcl variable named “$r1”, not a program or Total-
View variable named “$r1”.

Command alias:
You may find the following alias useful:

Examples:
dprint scalar_y Displays the values of variable scalar_y within all pro-

cesses and threads in the current focus.

p argc Displays the value of argc.

p argv Displays the value of argv, along with the first string to
which it points.

Alias Definition Meaning

p {dprint} Evaluates and displays information.
88 Command Line Interface Guide Version 5.0

CLI Commands

dprint
p {argv[argc-1]} Prints the value of argv[argc-1]. If the execution point
is in main(), this is the last argument passed to
main().

dfocus p1 dprint scalar_y
Displays the values of variable scalar_y for the threads
in process 1.

f 1.2 p arrayx Displays the values of the array arrayx for just the sec-
ond thread in process 1.

for {set i 0} {$i < 100} {incr i} {p argv\[$i\]}
If main() is in the current scope, prints the program’s
arguments followed by the program’s environment
strings.
Version 5.0 Command Line Interface Guide 189

1

6
CLI Commands

dptsets
dptsets Shows status of processes and threads in an array of P/T expressions
Format:

dptsets [ptset_array] ...

Arguments:
ptset_array An optional array that indicates the P/T sets that will

be shown. An element of the array can be a number or
it can be a more complicated P/T expression. For
more information, see “P/T Set Expressions” on
page 63.

Description:
The dptsets command shows the status of each process and thread in a Tcl
array of P/T expressions. These array elements are P/T expressions (see
Chapter 4) and the elements' array indices are strings that label each ele-
ment's section in the output. Using this array syntax is explored in the
Examples section.

If you do not use the optional ptset_array argument, the CLI supplies a
default array containing all P/T set designators. These designators are error,
existent, held, running, stopped, unheld, and watchpoint.

Examples:
The following command displays information about processes and threads
in the current focus:

d.1<> dptsets
unheld:
1: 808694 Stopped [fork_loopSGI]

1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64

existent:
1: 808694 Stopped [fork_loopSGI]

1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64

watchpoint:
90 Command Line Interface Guide Version 5.0

CLI Commands

dptsets
running:

held:

error:

stopped:
1: 808694 Stopped [fork_loopSGI]

1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64

...

The following example creates a two-element P/T set array, then displays
the results. Notice the labels in this example.

d1.<> set set_info(0) breakpoint(1)
breakpoint(1)
d1.<> set set_info(1) stopped(1)
stopped(1)
d1.<> dptsets set_info
0:
1: 892484 Breakpoint [arraysSGI]

1.1: 892484.1 Breakpoint PC=0x10001544,
[arrays.F#81]

1:
1: 892484 Breakpoint [arraysSGI]

1.1: 892484.1 Breakpoint PC=0x10001544,
[arrays.F#81]

The array index to set_info becomes a label identifying the kind of informa-
tion being displayed. In contrast, the information within parentheses in the
breakpoint and stopped functions identify the arena for which the func-
tion will return information.

Using numbers as array indices almost ensures that you will not remember
what is being printed. The following almost identical example shows a bet-
ter way to use these array indices.
Version 5.0 Command Line Interface Guide 191

1

6
CLI Commands

dptsets
d1.<> set set_info(my_breakpoints) breakpoint(1)
breakpoint(1)
d1.<> set set_info(my_stopped) stopped(1)
stopped(1)
d1.<> dptsets set_info
my_stopped:
1: 882547 Breakpoint [arraysSGI]

1.1: 882547.1 Breakpoint PC=0x10001544,
[arrays.F#81]

my_breakpoints:
1: 882547 Breakpoint [arraysSGI]

1.1: 882547.1 Breakpoint PC=0x10001544,
[arrays.F#81]

The following commands also create a two-element array. It differs in that
the second element is the difference between three P/T sets.

d.1<> set mystat(system) a–gW
d.1<> set mystat(reallystopped) \

stopped(a)–breakpoint(a)–watchpoint(a)
d.1<> dptsets t mystat
system:
Threads in process 1 [regress/fork_loop]:
1.-1: 21587.[-1] Running PC=0x3ff805c6998
1.-2: 21587.[-2] Running PC=0x3ff805c669c
...
Threads in process 2 [regress/fork_loop.1]:
2.-1: 15224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...

reallystopped:
2.2: 15224.2 Stopped PC=0x3ff800d5758
2.-1: 15224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...
92 Command Line Interface Guide Version 5.0

CLI Commands

drerun
drerun Restarts processes
Format:

drerun [cmd_args][in_operation infile]
[out_operations outfile]
[error_operations errfile]

Arguments:
cmd_args The arguments to be used for restarting a process.

operations The in_operation, out_operations, and error_operations are
discussed in the Description section.

infile If specified, indicates a file from which the launched
processes will read information.

outfile If specified, indicates the file into which the launched
processes will write information.

errfile If specified, indicates the file into which the launched
processes will write error information.

Description:
The drerun command restarts the process that is in the current focus set
from its beginning. The drerun command uses the arguments stored in the
ARGS and ARGS_DEFAULT state variables. These are set every time the
process is run with different arguments. Consequently, if you do not specify
the arguments to be used when restarting the process, the CLI uses the
arguments specified when the process was previously run. (See drun on
page 197 for more information.)

The dererun command differs from the drun command in that

g If you do not specify an argument, drerun uses the default values. In
contrast, the drun command clears the argument list for the program.
This means that you cannot use an empty argument list with the drerun
command to tell the CLI to restart a process and expect that no argu-
ments will be used.

g If the process already exists, drun will not restart it. (If you must use the
drun command, you must first kill the process.) In contrast, the drerun
command will kill and then restart the process.

The arguments to this command are similar to the arguments used in the
Bourne shell.
Version 5.0 Command Line Interface Guide 193

1

6
CLI Commands

drerun
The in_operation is follows:

< infile Reads from infile instead of stdin.

The out_operations are as follows:

> outfile Sends output to outfile instead of stdout.

>& outfile Sends output and error messages to outfile instead of
stdout and stderr.

>>& outfile Appends output and error messages to outfile.

>> outfile Appends output to outfile.

The error_operations are:

2> errfile Sends error messages to errfile instead of stderr.

2>>errfile Appends error messages to errfile.

Command alias:
You may find the following alias useful:

Examples:
drerun Reruns the current process. Because arguments are

not used, the process is restarted using its previous
values.

rr –firstArg an_argument –aSecondArg a_second_argument
Reruns the current process. The default arguments are
not used because replacement arguments are speci-
fied.

Alias Definition Meaning

rr {drerun} Restarts processes
94 Command Line Interface Guide Version 5.0

CLI Commands

drestart
drestart Restarts a checkpoint (SGI only)
Format:

drestart [process-state] [–no_unpark] [–g gid] [–r host]
[–ask_attach_parallel | –no_attach_parallel]
[–no_preserve_ids] checkpoint-name

Arguments:
process_state Defines the state of the process both before and after

the checkpoint. If you do not specify a process state,
parallel processes are held immediately after the
place where the checkpoint occurred. The CLI
attaches to these created parallel processes. You can
use one of the following options:

–detach While TotalView starts checkpointed process, it does
not attach to them.

–go TotalView starts checkpointed parallel processes and
attaches to them.

–halt TotalView stops checkpointed processes after it
restarts them.

–no_unpark Indicates that the checkpoint was created outside of
TotalView or you that you used the dcheckpoint com-
mand’s –no_park option when you created the check-
point file.

–g gid Names the control group into which TotalView places
all created processes.

–r host Names the remote host upon which the restart will
occur.

–ask_attach_parallel
Asks if the CLI should automatically attach to the par-
allel processes being created. This is most often used
in procedures.

–no_attach_parallel
Tells TotalView to attach only to the base process.
That is, the CLI will not attach to the parallel pro-
cesses being created.
Version 5.0 Command Line Interface Guide 195

1

6
CLI Commands

drestart
–no_preserve_ids Tells TotalView that it should use new IDs after it
restarts the processes. If you omit this option,
TotalView causes the process to use the same pro-
cess, group, session, or ash IDs after restarting.

checkpoint-name The name used when the checkpoint file was saved.

Description:
The drestart command restores and restarts all of the checkpointed pro-
cesses. By default, the CLI will attach to the base process. Here are some
of your choices.

g If there are parallel processes related to this base process, TotalView will
attach to them.

g If you do not want the CLI to automatically attach to these parallel pro-
cesses, use the –no_attach_parallel option.

g If you do not know if there are parallel processes or want the user to
decide or if you are using this command within a Tcl procedure, you
should use the –ask_parallel_process option.

Examples:
drestart check1 Restarts the processes checkpointed in the check1

file. The CLI automatically attaches to parallel pro-
cesses.

drestart –no_unpark check1
Restarts the processes checkpointed in the check1
file. This file was either created outside of TotalView or
it was created using the –no_park option.
96 Command Line Interface Guide Version 5.0

CLI Commands

drun
drun Starts or restarts processes
Format:

drun [cmd_arguments] [in_operation infile]
[out_operations outfile]
[error_operations errfile]

Arguments:
cmd_arguments The argument list passed to the process.

operations The in_operation, out_operations, and error_operations are
discussed in the Description section.

infile If specified, indicates a file from which the launched
processes will read information.

outfile If specified, indicates the file into which the launched
processes will write information.

errfile If specified, indicates the file into which the launched
processes will write error information.

Description:
The drun command launches each process in the current focus and starts
it running. The command arguments are passed to the processes, and I/O
redirection for the program, if specified, will occur. Later in the session, you
can use the drerun command to restart the program.

The arguments to this command are similar to the arguments used in the
Bourne shell.

The in_operation is as follows:

< infile Reads from infile instead of stdin.

The out_operations are as follows:

> outfile Sends output to outfile instead of stdout.

>& outfile Sends output and error messages to outfile instead of
stdout and stderr.

>>& outfile Appends output and error messages to outfile.

>> outfile Appends output to outfile.
Version 5.0 Command Line Interface Guide 197

1

6
CLI Commands

drun
The error_operations are:

2> errfile Sends error messages to errfile instead of stderr.

2>>errfile Appends error messages to errfile.

In addition, the CLI uses the following state variables to hold the default
argument list for each process.

ARGS_DEFAULT The CLI sets this variable if you use the –a command-
line option when you started the CLI or TotalView.
(This option passes command-line arguments that
TotalView will use when it invokes a process.) This vari-
able holds the default arguments that TotalView
passes to a process when the process has no default
arguments of its own.

ARGS(n) An array variable containing the command-line argu-
ments. The index n is the process ID n. This variable
holds a process’s default arguments. It is always set
by the drun command, and it is also contains any
arguments you used when executing a drerun com-
mand.

If more than one process is launched with a single drun command, each
receives the same command-line arguments.

In addition to setting these variables by using the –a command-line option
or specifying cmd_arguments when you use this or the drerun command, you
can modify these variables directly with the dset and dunset commands.

You can only use this command to tell TotalView that it should execute ini-
tial processes because TotalView cannot directly run processes that your
program spawns. When you enter this command, initial process must be
have terminated; if it was not terminated, you are told to kill it and retry.
(You can, of course, use the drerun command.)

The first time you use the drun command, TotalView copies arguments to
program variables. It also sets up any requested I/O redirection. If you
reenter this command for processes that TotalVIew previously started—or
issued for the first time for a process that was attached to using the
dattach command—the CLI reinitializes your program.
98 Command Line Interface Guide Version 5.0

CLI Commands

drun
Issues When Using IBM’s poe

Both poe and the CLI can interfere with one another because each believes
that it owns stdin. Because poe is trying to manage stdin on behalf of your
processes, it continually reads from stdin, acquiring all characters that it
sees. This means that the CLI will never see these characters. If your target
process does not use stdin, you can use the –stdinmode none option.
Unfortunately, this option is incompatible with poe’s –cmdfile option that
is used when specifying –pgmmodel mpmd.

If you encounter these problems, you should redirect stdin within the CLI.
For example:

drun < in.txt

Command alias:
You may find the following alias useful:

Examples:
drun Tells the CLI to begin executing processes repre-

sented in the current focus.

f {p2 p3} drun Begins execution of processes 2 and 3.

f 4.2 r Begins execution of process 4. Note that this is the
same as f 4 drun.

dfocus a drun Restarts execution of all processes known to the CLI.
If they were not previously killed, you are told to use
the dkill command and then try again.

drun < in.txt Restarts execution of all processes in the current
focus, setting them up to get standard input from file
in.txt.

Alias Definition Meaning

r {drun} Starts or restarts processes.
Version 5.0 Command Line Interface Guide 199

2

6
CLI Commands

dset
dset Changes or views CLI state variables
Format:

Creates or changes a CLI state variable

dset [–new] debugger-var value

Views current CLI state variables

dset [debugger-var]

Arguments:
–new Creates a variable if it does not already exist. If you

omit this option and the variable does not exist, the
CLI returns an error message.

debugger-var Name of a CLI state variable.

value Value to be assigned to debugger-var.

Description:
The dset command sets the value of CLI debugger variables.

If you type dset with no arguments, the CLI displays the names and current
values for all TotalView CLI state variables. If you use only one argument,
the CLI returns and displays the variable’s value.

The second argument defines the value that will replace a variable’s previ-
ous value. It must be enclosed in quotes if it contains more than one word.

If you do not use an argument, the CLI only displays variables in the cur-
rent namespace. To show all variables in a namespace, just enter the
namespace name immediately followed by a double colon; for example,
TV::. You can also use an asterisk (*) as a wildcard to indicate that the CLI
should match more than one string; for example, TV::g* matches all vari-
ables beginning with g in the TV namespace.

For example, to view all variables in the TV:: namespace, you would enter:

dset TV::

Similarly, you can view variables in a specific namespace by using the fol-
lowing command:

dset TV::GUI::
00 Command Line Interface Guide Version 5.0

CLI Commands

dset
The rightmost double colons are required when obtaining listings for a
namespace. If you omit them, Tcl assumes that you are requesting informa-
tion on a variable. For example, dset TV::GUI looks for a variable named
GUI in the TV namespace.

The state variables are:

ARGS(dpid) The argument strings that are passed to the process
with TotalView ID dpid the next time it is launched.

ARGS_DEFAULT Contains the argument string passed to a new process
that does not have an ARGS(dpid) variable defined.

BARRIER_STOP_ALL
Contains the default value for the STOP_ALL variable
on newly created barrier points.

group: New barrier points will have the
stop_when_hit flag set to group. When one thread
reaches the barrier, TotalView stops all processes in its
control group.

process: New barrier points just stop the process
that hit the barrier.

none: New thread barrier points just stop the thread
that hit the barrier.

BARRIER_STOP_WHEN_DONE
Contains the default value for a –stop_when_done
option of commands that set barriers.

group: When a barrier is satisfied, TotalView stops all
processes in the control group.

process: When a barrier is satisfied, TotalView stops
the processes in the satisfaction set.

none: TotalView only stops the threads in the satis-
faction set; other threads are not affected. For pro-
cess barriers, there is no difference between process
and none. In all cases, TotalView releases the satisfac-
tion set when the barrier is satisfied.

CGROUP(dpid) Contains the control group for the process with the
TotalView ID dpid. Setting this variable moves process
dpid into a different control group. For example, the
Version 5.0 Command Line Interface Guide 201

2

6
CLI Commands

dset
following command moves process 3 into the same
group as process 1:

dset CGROUP(3) $CGROUP(1)

COMMAND_EDITING
Enables some Emacs-like commands that you can use
while editing text in the CLI. These editing commands
are always available in the CLI window of GUI
TotalView. However, they are only available within the
stand-alone CLI if the terminal it is being run from
supports cursor positioning and clear-to-end-of-line.
The commands that you can use are:

^A: Moves to the beginning of the line.

^B: Moves one character backward.

^D: Deletes the character to the right of cursor.

^E: Moves to the end of the line.

^F: Moves one character forward.

^K: Deletes all text to the end of line.

^N: Retrieves the next entered command (only works
after ^P).

^P: Retrieves the previously entered command.

^R or ^L: Redraws the line.

^U: Deletes all text from the cursor to the beginning
of the line.

Rubout or Backspace: Deletes the character to the
left of the cursor.

EXECUTABLE_PATH
Contains a colon-separated list containing the direc-
tories that TotalView searches when it looks for source
and executable files.

GROUP(gid) Contains a list containing the TotalView IDs for all
members in group gid. User-created groups can be
modified by directly using the dgroups –add and
dgroups –remove commands.
02 Command Line Interface Guide Version 5.0

CLI Commands

dset
The first element in the list indicates what kind of
group it is, as follows:

control: The group of all processes in a program

lockstep: A group of threads that share the same PC

process: A user-created process group

share: The group of processes in one program that
share the same executable image

thread: A user-created thread group

workers: The group of worker threads in a program

Elements that follow are either pids (for process
groups) or pid.tid pairs (for thread groups).

The gid is a simple number for most groups. In con-
trast, a lockstep group’s ID number is of the form
pid.tid. Thus, GROUP(2.3) contains the lockstep group
for thread 3 in process 2. Note, however, that the CLI
will not display lockstep groups when you use dset
with no arguments—they are hidden variables.

The GROUP(id) variable is a read-write variable except
when the group is not writable. Examples are lock-
step, share, and control groups.

GROUPS Contains a list that contains all TotalView groups IDs
except for the lockstep groups.

LINES_PER_SCREEN
Defines the number of lines shown before the CLI
stops printing information and displays its more
prompt. The following values have special meaning:

0: No more processing occurs, and the printing does
not stop when the screen fills with data.

NONE: This is a synonym for 0.

AUTO: The CLI uses the tty settings to determine the
number of lines to display. This may not work in all
cases. For example, Emacs sets the tty value to 0. If
AUTO works improperly, you will need to explicitly set
a value.
Version 5.0 Command Line Interface Guide 203

2

6
CLI Commands

dset
MAX_LIST Defines the number of lines displayed in response to a
dlist command.

PROMPT Defines the CLI prompt. If you use brackets ([]) in the
prompt, TotalView assumes the information within the
brackets is a Tcl command and evaluates tit o obtain
the prompt string.

PTSET Defines the current focus.

SGROUP(pid) Contains the group ID of the share group for process
pid. TotalView decides which share group this is by
looking at the control group for the process and the
executable associated with it. You cannot directly
modify this group.

SHARE_ACTION_POINT
Contains the default value for TotalView’s internal
share_in_group flag for newly created action points.
If this value is true, an action point will be active
across the group. If it is false, an action point is only
active in the process upon which it is set.

When a dbarrier, dbreak, or dwatch command is
invoked using the default focus, this variable deter-
mines if the new action is shared.

STOP_ALL Indicates the default value for the “stop all” attribute
of newly created breakpoints and watchpoints, as fol-
lows:

group: Stops the entire control group when the
action point is hit.

process: Stops the entire process when the action
point is hit.

thread: Only stops the thread that hit the action
point. Note that none is a synonym for thread.

TAB_WIDTH Indicates the number of spaces used to simulate a tab
character when the CLI displays information.

THREADS(pid) Contains a list of all threads in the process pid, in the
form {pid.1 pid.2 ...}. This variable is read-only.
04 Command Line Interface Guide Version 5.0

CLI Commands

dset
TOTALVIEW_ROOT_PATH
Names the directory in which the TotalView execut-
able is located.

TOTALVIEW_TCLLIB_PATH
Contains a list containing the directories in which the
CLI searches for TCL library components.

TOTALVIEW_VERSION
Contains the version number and the type of com-
puter architecture upon which TotalView is executing.

VERBOSE Controls the error message information displayed by
the CLI. The values for this variable can be:

INFO: Prints error, warnings, and informational mes-
sages. Informational message include data on
dynamic libraries and symbols.

WARNING: Only print errors and warnings.

ERROR: Only print error messages.

SILENT: Does not print error, warning, and informa-
tional messages. This also shuts off the printing of
results from CLI commands. This should only be used
when the CLI is run in batch mode.

WGROUP(pid) The group ID of the thread-group of worker threads
associated with the process pid.

WGROUP(pid.tid) Either it contains the group ID of the worker sgroup in
which thread pid.tid is a member or it contains 0 (zero),
to indicate that thread pid.tid is not a worker thread.
Storing a nonzero value in this variable marks a thread
as a worker. In this case, the value that is read back
will always be the ID of the workers group associated
with the control group, regardless of the actual non-
zero value assigned to it.

Storing a zero value marks it as a nonworker.
Version 5.0 Command Line Interface Guide 205

2

6
CLI Commands

dset
The following table lists the default and permitted values for all CLI vari-
ables:

TABLE 8: Defaults and Permitted Values for CLI Variables

Debugger Variable Permitted Values Default

ARGS A string —

ARGS_DEFAULT A string —

BARRIER_STOP_ALL group, process, or thread group

BARRIER_STOP_WHEN_-
DONE

group, process, or thread group

CGROUP A number —

COMMAND_EDITING true/false false

EXECUTABLE_PATH Any valid directory or direc-
tory path. To include the cur-
rent setting, use
$EXECUTABLE_PATH.

./:$PATH

GROUP A Tcl array of lists indexed by
the group ID. Each entry
contains the members of one
group.

—

GROUPS A Tcl list of IDs. This is a
read-only value and cannot
be set.

—

LINES_PER_SCREEN A positive integer, or the
AUTO or NONE values.

AUTO

MAX_LIST A positive integer 20

PROMPT Any string. If you wish to
access the value of PTSET,
you must place the variable
within brackets; that is, [dset
PTSET].

{[dfocus]> }

PTSET This is a read-only value and
cannot be set.

d1.<
06 Command Line Interface Guide Version 5.0

CLI Commands

dset
Examples:
dset PROMPT "Fixme% "

Sets the prompt to be Fixme% followed by a space.

dset * Displays all CLI state variables and their current set-
tings.

dset VERBOSE Displays the current setting for output verbosity.

dset EXECUTABLE_PATH ../test_dir;$EXECUTABLE_PATH
Places ../test_dir at the beginning of the previous
value for the executable path.

dset TV::GUI::fixed_font_size 12
Sets the TotalView GUI so that it displays fixed fonts
at 12 dpi. Commands such as this are often found in a
startup file.

SGROUP A number —

SHARE_ACTION_POINT True or false true

STOP_ALL group, process, or thread group

TAB_WIDTH A positive number. –1 indi-
cates no tab expansion.

8

TOTALVIEW_ROOT_PATH The location of the TotalView
installation directory. This is
a read-only variable and can-
not be set.

TOTALVIEW_TCLLIB_PATH Any valid directory or direc-
tory path. To include the cur-
rent setting, use
$TOTALVIEW_TCLLIB_-
PATH.

The directory
containing the
CLI Tcl libraries

TOTALVIEW_VERSION This is a read-only value and
cannot be set.

VERBOSE INFO, WARNING, ERROR,
and SILENT

INFO

WGROUP A number —

TABLE 8: Defaults and Permitted Values for CLI Variables (cont.)

Debugger Variable Permitted Values Default
Version 5.0 Command Line Interface Guide 207

2

6
CLI Commands

dset
The following examples show the contents of a “typical” variable:

GROUP(1) { control 1 2 3 } Control group. Members are
processes 1, 2, and 3.

GROUP(2) { share 1 2 } Share group. Members are pro-
cesses 1 and 2.

GROUP(4) { thread 2.1 2.3 2.7} General thread group. Mem-
bers are threads 2.1, 2.3, and
2.7.

GROUP(5) { workers 17.3 17.4 17.12} Thread workers group. Mem-
bers are threads 17.3, 17.4, and
17.12.

GROUP(17) { process 2 5 9 } A user-created group of pro-
cesses. Members are processes
2, 5, and 9.
08 Command Line Interface Guide Version 5.0

CLI Commands

dstatus
dstatus Shows current status of processes and threads
Format:

dstatus

Description:
The dstatus command prints information about the current state of each
process and thread in the current focus. The ST command is an alias for
dfocus g dstatus, and acts as a group-status command.

If you have not changed the focus, the default width is process. In this case,
dstatus shows the status for each thread in process 1. In contrast, if you
set the focus to g1.<, the CLI displays the status for every thread in the
control group containing process 1.

Command alias:
You may find the following aliases useful:

Examples:
dstatus Displays the status of all processes and threads in the

current focus. For example:

1: 42898 Breakpoint [arraysAIX]
1.1: 42898.1 Breakpoint \

PC=0x100006a0, [./arrays.F#87]
f a st Displays the status for all threads in all processes.

f p1 st Displays the status of the threads associated with
process 1. If the focus is at its default (d1.<), this is
the same as typing st.

ST Displays the status of all processes and threads in the
control group containing the focus process. For exam-
ple:

1: 773686 Stopped [fork_loop_64]
1.1: 773686.1 Stopped PC=0x0d9cae64
1.2: 773686.2 Stopped PC=0x0d9cae64
1.3: 773686.3 Stopped PC=0x0d9cae64
1.4: 773686.4 Stopped PC=0x0d9cae64

Alias Definition Meaning

st {dstatus} Shows current status

ST {dfocus g dstatus} Group status
Version 5.0 Command Line Interface Guide 209

2

6
CLI Commands

dstatus
1.5: 773686.5 Stopped PC=0x0d9cae64
2: 779490 Stopped [fork_loop_64.1]
2.1: 779490.1 Stopped PC=0x0d9cae64
2.2: 779490.2 Stopped PC=0x0d9cae64
2.3: 779490.3 Stopped PC=0x0d9cae64
2.4: 779490.4 Stopped PC=0x0d9cae64
2.5: 779490.5 Stopped PC=0x0d9cae64

f W st Shows status for all worker threads in the focus set. If
the focus is set to d1.<, the CLI shows the status of
each worker thread in process 1.

f W ST Shows status for all worker threads in the control
group associated with the current focus.

In this case, TotalView merges the W specifier with the
g specifier in the ST alias. The results is the same as if
you has entered f gW st.

f L ST Shows status for every thread in the share group that
is at the same PC as the thread of interest.
10 Command Line Interface Guide Version 5.0

CLI Commands

dstep
dstep Steps lines, stepping into subfunctions
Format:

dstep [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of source lines to be executed.

Description:
The dstep command executes source lines; that is, it advances the pro-
gram by steps (source lines). If a statement in a source line invokes a sub-
function, dstep steps into the function.

The optional num-steps argument tells the CLI how many dstep operations it
should perform. If you do not specify num-steps, the default is 1.

The dstep command iterates over the arenas in the focus set by doing a
thread-level, process-level, or group-level step in each arena, depending
on the width of the arena. The default width is process (p).

If the width is process, the dstep command affects the entire process con-
taining the thread to be stepped. Thus, while only one thread is stepped,
all other threads contained in the same process also resume executing. In
contrast, the dfocus t dstep command tells the CLI that it should just step
the thread of interest.

NOTE On systems having identifiable manager threads, the “dfocus t dstep” com-
mand allows the manager threads to run as well as the thread of interest.

The action taken on each term in the focus list depends on whether its
width is thread, process, or group, and on the group specified in the cur-
rent focus. (If you do not explicitly specify a group, the default is the con-
trol group.)

If some thread hits an action point other than the goal breakpoint during a
step operation, that ends the step.

thread width

Only the thread of interest is allowed to run. (This is not supported on all
systems.)
Version 5.0 Command Line Interface Guide 211

2

6
CLI Commands

dstep
process width (default)

The behavior depends on the group specified in the arena.

Process group TotalView allows the entire process to run, and execu-
tion continues until the thread of interest arrives at its
goal location. TotalView plants a temporary break-
point at the goal location while this command exe-
cutes. If another thread reaches this goal breakpoint
first, your program continues to execute until the
thread of interest reaches the goal.

Thread group TotalView runs all threads in the process that are in
that group to the same goal as the thread of interest.
If a thread arrives at the goal that is not in the group
of interest, it also stops there. The group of interest
specifies the set of threads for which TotalView will
wait. This means that the command does not com-
plete until all threads in the group of interest are at
the goal.

group width

The behavior depends on the group specified in the arena.

Process group TotalView examines that group, and each process hav-
ing a thread stopped at the same location as the
thread of interest is identified. One matching thread
from each matching process is selected. TotalView
then runs all processes in the group, and waits until
the thread of interest arrives at its goal location, and
each selected thread also arrives there.

Thread group The behavior is similar to process width behavior
except that all processes in the program control group
will run, rather than just the process of interest.
Regardless of what threads are in the group of inter-
est, TotalView only waits for threads that are in the
same share group as the thread of interest. This is
because it is not useful to run threads executing in dif-
ferent images to the same goal.
12 Command Line Interface Guide Version 5.0

CLI Commands

dstep
Command alias:
You may find the following aliases useful:

Alias Definition Meaning

s {dstep} Runs the thread of interest one statement
while allowing other threads in the process
to run.

S {dfocus g dstep} A group stepping command. This searches
for threads in the share group that are at the
same PC as the thread of interest, and steps
one such “aligned” thread in each member
one statement. The rest of the control group
runs freely.

sl {dfocus L dstep} Steps the process threads in “lockstep”. This
steps the thread of interest one statement,
and runs all threads in the process that are
at the same PC as the thread of interest to
the same statement. Other threads in the
process run freely. The group of threads that
are at the same PC is called the lockstep group.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

SL {dfocus gL dstep} Steps “lockstep” threads in the group. This
steps all threads in the share group that are
at the same PC as the thread of interest one
statement. Other threads in the control
group run freely.

sw {dfocus W dstep} Steps worker threads in the process. This
steps the thread of interest one statement,
and runs all worker threads in the process to
the same (goal) statement. The nonworker
threads in the process run freely.

This alias does not force process width. If
the default focus is set to group, this steps
the group.
Version 5.0 Command Line Interface Guide 213

2

6
CLI Commands

dstep
Examples:
dstep Executes the next source line, stepping into any pro-

cedure call that is encountered. While only the current
thread is stepped, other threads in the process run.

s 15 Executes the next 15 source lines.

f p1.2 dstep Steps thread 2 in process 1 by one source line. This
also resumes execution of all other threads in process
1; they are halted as soon as thread 2 in process 1
executes its statement.

f t1.2 s Steps thread 2 in process 1 by one source line. No
other threads in process 1 execute.

SW {dfocus gW dstep} Steps worker threads in the group. This steps
the thread of interest one statement, and
runs all worker threads in the same share
group to the same statement. All other
threads in the control group run freely.

Alias Definition Meaning
14 Command Line Interface Guide Version 5.0

CLI Commands

dstepi
dstepi Steps machine instructions, stepping into subfunctions
Format:

dstepi [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of instructions to be executed.

Description:
The dstepi command executes assembler instruction lines; that is, it
advances the program by single instructions.

The optional num-steps argument tells the CLI how many dstepi operations
it should perform. If you do not specify num-steps, the default is 1.

For more information, see dstep on page 211.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

si {dstepi} Runs the thread of interest one instruction
while allowing other threads in the process
to run.

SI {dfocus g dstepi} A group stepping command. This searches
for threads in the share group that are at the
same PC as the thread of interest, and steps
one such “aligned” thread in each member
one instruction. The rest of the control
group runs freely.

sil {dfocus L dstepi} Steps the process threads in “lockstep”. This
steps the thread of interest one instruction,
and runs all threads in the process that are
at the same PC as the thread of interest to
the same instruction. Other threads in the
process run freely. The group of threads that
are at the same PC is called the lockstep group.

This alias does not force process width. If
the default focus is set to group, this steps
the group.
Version 5.0 Command Line Interface Guide 215

2

6
CLI Commands

dstepi
Examples:
dstepi Executes the next machine instruction, stepping into

any procedure call that is encountered. While only the
current thread is stepped, other threads in the pro-
cess are allowed to run.

si 15 Executes the next 15 instructions.

f p1.2 dstepi Steps thread 2 in process 1 by one instruction. This
also resumes execution of all other threads in process
1; they are halted as soon as thread 2 in process 1
executes its instruction.

f t1.2 si Steps thread 2 in process 1 by one instruction. No
other threads in process 1 execute.

SIL {dfocus gL dstepi} Steps “lockstep” threads in the group. This
steps all threads in the share group that are
at the same PC as the thread of interest one
instruction. Other threads in the control
group run freely.

siw {dfocus W dstepi} Steps worker threads in the process. This
steps the thread of interest one instruction,
and runs all worker threads in the process to
the same (goal) statement. The nonworker
threads in the process run freely.

This alias does not force process width. If
the default focus is set to group, this steps
the group.

SIW {dfocus gW dstepi} Steps worker threads in the group. This steps
the thread of interest one instruction, and
runs all worker threads in the same share
group to the same statement. All other
threads in the control group run freely.

Alias Definition Meaning
16 Command Line Interface Guide Version 5.0

CLI Commands

dunhold
dunhold Releases a held process or thread
Format:

Releases a process

dunhold –process

Releases a thread

dunhold –thread

Arguments:
–process Indicates that TotalView should release processes in

the current focus. –process can be abbreviated to –p.

–thread Indicates that TotalView should release threads in the
current focus. –thread can be abbreviated to –t.

Description:
The dunhold command releases the threads or processes in the current
focus. Note that system manager threads cannot be held or released.

Command alias:
You may find the following aliases useful:

Examples:
f w uhtp Unholds all worker threads in the focus process.

htp; uht Holds all threads in the focus process except the
thread of interest.

Alias Definition Meaning

uhp {dfocus p dunhold
-process}

Releases the process of interest.

UHP {dfocus g dunhold
-process}

Releases the processes in the focus
group.

uht {dfocus t dunhold –thread} Releases the thread of interest.

UHT {dfocus g dunhold –thread} Releases all threads in the focus
group.

uhtp {dfocus p dunhold –thread} Releases the threads in the current
process.
Version 5.0 Command Line Interface Guide 217

2

6
CLI Commands

dunset
dunset Restores default settings for state variables
Format:

Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values

dunset –all

Arguments:
debugger-var Name of the CLI state variable whose default setting is

being restored.

–all Restores the default settings of the CLI state vari-
ables.

Description:
The dunset command reverses the effects of any previous dset commands,
restoring CLI state variables to their default settings.

NOTE Because user-defined state variables have no default values, the CLI deletes
them.

Tcl variables (those created with the Tcl set command) are, of course, unaf-
fected by this command.

If you use the –all option, the dunset command affects all changed CLI
state variables, restoring them to the settings that existed when the CLI
session began. Similarly, specifying debugger-var tells the CLI to restore that
one variable.

Examples:
dunset PROMPT Restores the prompt string to its default setting; that

is, {[dfocus]>}.

dunset –all Restores all CLI state variables to their default set-
tings.
18 Command Line Interface Guide Version 5.0

CLI Commands

duntil
duntil Runs the process until a target place is reached
Format:

Runs to a line

duntil line-number

Runs to an address

duntil –address addr

Runs into a function

duntil proc-name

Arguments:
line-number A line number in your program.

–address addr An address in your program.

proc-name The name of a procedure, function, or subroutine in
your program.

Description:
The duntil command runs the thread of interest until execution reaches a
line or absolute address, or until it enters a function.

If you use a process or group width, all threads in the process or group that
are not running to the goal are allowed to run. If one of the “secondary”
threads arrives at the goal before the thread of interest, it continues run-
ning, ignoring this goal. In contrast, if you specify thread width, only the
thread of interest runs.

The duntil command differs from other step commands when you apply it
to a group.

Process group TotalView runs the entire group and the CLI waits until
all processes in the group have at least one thread
that has arrived at the goal breakpoint. This lets you
sync up all the processes in a group in preparation for
group-stepping them.

Thread group TotalView runs the process (for p width) or the control
group (for g width) and waits until all the running
threads in the group of interest arrive at the goal.
Version 5.0 Command Line Interface Guide 219

2

6
CLI Commands

duntil
The differences between this command and other stepping commands are:

g Process Group Operation: TotalView examines the thread of interest
to see if it is already at the goal. If it is, TotalView does not run the pro-
cess of interest. Similarly, TotalView examines all other processes in the
share group, and it only run processes that do not have a thread at the
goal. It also runs members of the control group that are not in the share
group.

g Group-Width Thread Group Operation: TotalView identifies all
threads in the entire control group that are not at the goal. Only those
threads are run. While TotalView runs share group members in which all
worker threads are already at the goal, it does not run the workers.
TotalView also runs processes in the control group that are outside the
share group. The duntil command operation ends when all members of
the focus thread group are at the goal.

g Process-Width Thread Group Operation: TotalView identifies all
threads in the entire focus process that are not already at the goal. Only
those threads run. The duntil command operation ends when all threads
in the process that are also members of the focus group arrive at the
goal.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

un {duntil} Runs the thread of interest until it reaches a
target while allowing other threads in the
process to run.

UN {dfocus g duntil} Runs the entire control group until every
process in the share group has at least one
thread at the goal. Processes have a thread
at the goal do not run.
20 Command Line Interface Guide Version 5.0

CLI Commands

duntil
Examples:
UNW 580 Lines up all worker threads at line 580.

un buggy_subr Runs to the start of the buggy_subr routine.

unl {dfocus L duntil} Runs the thread of interest until it reaches
the target, and runs all threads in the pro-
cess that are at the same PC as the thread of
interest to the same target. Other threads in
the process run freely. The group of threads
that are at the same PC is called the lockstep
group.

This does not force process width. If the
default focus is set to group, this runs the
group.

UNL {dfocus gL duntil} Runs “lockstep” threads in the share group
until they reach the target. Other threads in
the control group are allowed to run freely.

unw {dfocus W duntil} Runs worker threads in the process to a tar-
get. The nonworker threads in the process
run freely.

This does not force process width. If the
default focus is set to group, this runs the
group.

UNW {dfocus gW duntil} Runs worker threads in the same share group
to a target. All other threads in the control
group run freely.

Alias Definition Meaning
Version 5.0 Command Line Interface Guide 221

2

6
CLI Commands

dup
dup Moves up the call stack
Format:

dup [num-levels]

Arguments:
num-levels Number of levels to move up. The default is 1.

Description:
The dup command moves the current stack frame up one or more levels. It
also prints the new frame number and function.

Call stack movements are all relative, so dup effectively “moves up” in the
call stack. (“Up” is in the direction of main().)

Frame 0 is the most recent—that is, currently executing—frame in the call
stack, frame 1 corresponds to the procedure that invoked the currently
executing one, and so on. The call stack’s depth is increased by one each
time a procedure is entered, and decreased by one when it is exited. The
effect of dup is to change the context of commands that follow. For exam-
ple, moving up one level lets you access variables that are local to the pro-
cedure that called the current routine.

Each dup command updates the frame location by adding the appropriate
number of levels.

The dup command also modifies the current list location to be the current
execution location for the new frame, so a subsequent dlist displays the
code surrounding this location. Entering dup 2 (while in frame 0) followed
by a dlist, for instance, displays source lines centered around the location
from which the current routine’s parent was invoked. These lines will be in
frame 2.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

u {dup} Moves up the call stack
22 Command Line Interface Guide Version 5.0

CLI Commands

dup
Examples:
dup Moves up one level in the call stack. As a result, sub-

sequent dlist commands refer to the procedure that
invoked this one. After this command executes, it dis-
plays information about the new frame. For example:

1 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays.F#48]

dfocus p1 u 5 Moves up five levels in the call stack for each thread
involved in process 1. If fewer than five levels exist,
the CLI moves up as far as it can.
Version 5.0 Command Line Interface Guide 223

2

6
CLI Commands

dwait
dwait Blocks command input until the target processes stop
Format:

dwait

Description:
The dwait command tells the CLI to wait for all threads in the current focus
to stop or exit. Generally, this command treats the focus identically to
other CLI commands.

If you interrupt this command—typically by typing Ctrl-C—the CLI manu-
ally stops all processes in the current focus before it returns.

Unlike most other CLI commands, this command blocks additional CLI
input until the blocking action is complete.

Examples:
dwait Blocks further command input until all processes in

the current focus have stopped (that is, none of their
threads are still running).

dfocus {p1 p2} dwait
Blocks command input until processes 1 and 2 stop.
24 Command Line Interface Guide Version 5.0

CLI Commands

dwatch
dwatch Defines a watchpoint
Format:

Defines a watchpoint for a variable

dwatch variable [–length byte-count] [–g | –p | –t]
[[–l lang] –e expr] [–t type]

Defines a watchpoint for an address

dwatch –address addr –length byte-count [–g | –p | –t]
[[–l lang] –e expr] [–t type]

Arguments:
variable A symbol name corresponding to a scalar or aggregate

identifier, an element of an aggregate, or a derefer-
enced pointer.

–address addr An absolute address in the file.

–length byte-count The number of bytes to watch. If a variable is named,
the default is the variable’s byte length.

If you are watching a variable, you only need to spec-
ify the amount of storage to watch if you want to over-
ride the default value.

–g Tells TotalView to stop all processes in the process’s
control group when the watchpoint is hit.

–p Tells TotalView to stop the process that hit this watch-
point.

–t Tells TotalView to stop the thread that hit this watch-
point.

–l lang Specifies the language used when writing an
expression. The values you can use for lang are c,
c++, f7, f9, and asm, for C, C++, FORTRAN 77,
Fortran-9x, and assembler, respectively. If you do
not use a language code, TotalView picks one
based on the variable's type. If only an address is
used, TotalView uses the C language.

Not all languages are supported on all systems.

–e expr When the watchpoint is triggered, evaluates expr in
the context of the thread that hit the watchpoint.
Version 5.0 Command Line Interface Guide 225

2

6
CLI Commands

dwatch
In most cases, you need to enclose the expression
in braces ({ }).

–t type The data type of $oldval/$newval in the expression.

Description:
A dwatch command defines a watchpoint on a memory location where the
specified variables are stored. The watchpoint triggers whenever the value
of the variables changes. The CLI returns the ID of the newly created
watchpoint.

NOTE Watchpoints are not available on Alpha Linux and HP.

The default action is controlled by the STOP_ALL variable.

The watched variable can be a scalar, array, record, or structure object, or a
reference to a particular element in an array, record, or structure. It can
also be a dereferenced pointer variable.

The CLI lets you obtain a variable’s address in the following two ways if
your application demands that you specify a watchpoint with an address
instead of a variable name:

g dprint &variable

g dwhat variable

The dprint command displays an error message if the variable is within a
register.

NOTE Chapter 8 of the TOTALVIEW USERS GUIDE contains additional information on
watchpoints.

If you do not use the –length modifier, the CLI uses the length attribute
from the program’s symbol table. This means that the watchpoint applies
to the data object named; that is, specifying the name of an array lets you
watch all elements of the array. Alternatively, you can specify that a certain
number of bytes be watched, starting at the named location.

NOTE In all cases, the CLI watches addresses. If you specify a variable as the target
of a watchpoint, the CLI resolves the variable to an absolute address. If you are
watching a local stack variable, the position being watched is just where the variable
happened to be when space for the variable was allocated.
26 Command Line Interface Guide Version 5.0

CLI Commands

dwatch
The focus establishes the processes (not individual threads) for which the
watchpoint is in effect.

The CLI prints a message showing the action point identifier, the location
being watched, the current execution location of the triggering thread, and
the identifier of the triggering threads.

One possibly confusing aspect of using expressions is that their syntax dif-
fers from that of Tcl. This is because you will need to embed code written in
Fortran, C, or assembler within Tcl commands. In addition, your expres-
sions will often include TotalView intrinsic functions.

Command alias:
You may find the following alias useful:

Examples:
For these examples, assume that the current process set at the time of the
dwatch command consists only of process 2, and that p is a global vari-
able that is a pointer.

dwatch *p Watches the address stored in pointer p at the time
the watchpoint is defined, for changes made by pro-
cess 2. Only process 2 is stopped. Note that the
watchpoint location does not change when the value
of p changes.

dwatch {*p} Performs the same action as the previous example.
Because the argument to dwatch contains a space,
Tcl requires that you place the argument within
braces.

dfocus {p2 p3} wa *p
Watches the address pointed to by p in processes 2
and 3. Because this example does not contain either a
–p or –g option, the value of the STOP_ALL state vari-
able lets the CLI know if it should stop processes or
groups.

Alias Definition Meaning

wa {dwatch} Defines a watchpoint.
Version 5.0 Command Line Interface Guide 227

2

6
CLI Commands

dwatch
dfocus {p2 p3 p4} dwatch –p *p
Watches the address pointed to by p in processes 2,
3, and 4. The –p option indicates that only the pro-
cess triggering the watchpoint is stopped.

wa * aString –length 30 –e {goto $447}
Watches 30 bytes of data beginning at the location
pointed to by aString. If any of these bytes change,
execution control transfers to line 447.

wa my_vbl –type long –e { if ($newval == 0x11ffff38) $stop; }
Watches the my_vbl variable and triggers when
0x11ffff38 is stored into it.

wa my_vbl –e { if (my_vbl == 0x11ffff38) $stop; }
Performs the same function as the previous example.
Note that this tests the variable directly rather than by
using $newval.
28 Command Line Interface Guide Version 5.0

CLI Commands

dwhat
dwhat Determines what a name refers to
Format:

dwhat symbol-name

Arguments:
symbol-name Fully or partially qualified name specifying a variable,

procedure, or other source code symbol.

Description:
The dwhat command tells the CLI to display information about a named
entity in a program. The displayed information contains the name of the
entity and a description of the name. The examples that follow show many
of the kinds of elements that this command can display.

NOTE To view information on CLI state variables or aliases, you need to use the
dset or alias commands.

The focus constrains the query to a particular context.

The default width for this command is thread (t).

Command alias:
You may find the following alias useful:

Examples:
These examples show what the CLI displays when you enter one of the
indicated commands.

dprint timeout timeout = {
tv_sec = 0xc0089540 (-1073179328)
tv_usec = 0x000003ff (1023)

}

dwhat timeout In thread 1.1:

Name: timeout; Type: struct timeval; Size: 8
bytes; Addr: 0x11fffefc0

Scope: #fork_loop.cxx#snore \
(Scope class: Any)

Address class: auto_var (Local variable)

Alias Definition Meaning

wh {dwhat} Determines what a name refers to.
Version 5.0 Command Line Interface Guide 229

2

6
CLI Commands

dwhat
wh timeval In process 1:

Type name: struct timeval; Size: 8 bytes; \
Category: Structure

Fields in type:
{
tv_sec time_t (32 bits)
tv_usec int (32 bits)
}

dlist 20 float field3_float;
21 double field3_double;
22 en_check en1;
23
24 };
25
26 main ()
27 {
28 en_check vbl;
29 check_struct s_vbl;
30 > vbl = big;
31 s_vbl.field2_char = 3;
32 return (vbl + s_vbl.field2_char);
33 }

p vbl vbl = big (0)

wh vbl In thread 2.3:

Name: vbl; Type: enum en_check; \
Size: 4 bytes; Addr: Register 01

Scope: #check_structs.cxx#main \
(Scope class: Any)

Address class: register_var (Register variable)

wh en_check In process 2:

Type name: enum en_check; Size: 4 bytes; \
Category: Enumeration

Enumerated values:
big = 0
little = 1
fat = 2
thin = 3
30 Command Line Interface Guide Version 5.0

CLI Commands

dwhat
p s_vbl s_vbl = {
field1_int = 0x800164dc (-2147392292)
field2_char = '\377' (0xff, or -1)
field2_chars = "\003"
<padding> = '\000' (0x00, or 0)
field3_int = 0xc0006140 (-1073716928)
field2_uchar = '\377' (0xff, or 255)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)

field_sub = {
field1_int = 0xc0002980 (-1073731200)
<padding> = '\377' (0xff, or -1)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)
field2_long = 0x0000000000000000 (0)

...
}

wh s_vbl In thread 2.3:

Name: s_vbl; Type: struct check_struct; Size: 80 \
bytes; Addr: 0x11ffff240

Scope: #check_structs.cxx#main \
(Scope class: Any)

Address class: auto_var (Local variable)

wh check_struct In process 2:

Type name: struct check_struct; Size: 80 bytes; \
Category: Structure

Fields in type:
{
field1_int int (32 bits)
field2_char char (8 bits)
field2_chars <string>[2] (16 bits)
<padding> <char> (8 bits)
field3_int int (32 bits)
field2_uchar unsigned char(8 bits)
<padding> <char>[3] (24 bits)
field_sub struct sub_struct (320 bits){
Version 5.0 Command Line Interface Guide 231

2

6
CLI Commands

dwhat
field1_int int (32 bits)
<padding> <char>[4] (32 bits)
field2_long long (64 bits)
field2_ulong unsigned long (64 bits)
field3_uint unsigned int (32 bits)
en1 enum en_check (32 bits)
field3_double double (64 bits)

}
...

}
32 Command Line Interface Guide Version 5.0

CLI Commands

dwhere
dwhere Displays locations in the call stack
Format:

dwhere [num-levels] [–args]

Arguments:
num-levels Restricts output to this number of levels of the call

stack.

–args Displays argument names and values in addition to
program location information. If you omit this option,
arguments are not shown.

Description:
The dwhere command prints the current execution locations and the call
stacks—or sequences of procedure calls—which led to that point. Infor-
mation is shown for threads in the current focus, with the default being to
show information at the thread level.

Arguments control the amount of command output in two ways:

g The num-levels argument lets you control how many levels of the call
stacks are displayed, counting from the uppermost (most recent) level.

g The –args option tells the CLI that it should also display procedure argu-
ment names and values for each stack level.

A dwhere command with no arguments or options displays the call stacks
for all threads in the target set.

Output is generated for each thread in the target focus.

Command alias:
You may find the following alias useful:

Examples:
dwhere Displays the call stacks for all threads in the current

focus.

dfocus 2.1 dwhere 1
Displays just the most recent level of the call stack
corresponding to thread 1 in process 2. This shows

Alias Definition Meaning

w {dwhere} Displays the current location
Version 5.0 Command Line Interface Guide 233

2

6
CLI Commands

dwhere
just the immediate execution location of a thread or
threads.

w 1 –args Displays the current execution locations (one level
only) of threads in the current focus together with the
names and values of any arguments that were passed
into the current procedures.

f p1.< w 5 Displays the most recent five levels of the call stacks
for all threads involved in process 1. If the depth of
any call stack is less than five levels, all of its levels are
shown.

This command is a slightly more complicated way of
saying f p1 w 5 because specifying a process width
tells dwhere to ignore the thread indicator.
34 Command Line Interface Guide Version 5.0

CLI Commands

dworker
dworker Adds or removes a thread from a workers group
Format:

dworker { number | boolean }

Arguments:
number If positive, marks the thread of interest as a worker

thread by inserting it into the workers group.

boolean If true, marks the thread of interest as a worker thread
by inserting it into the workers group. If false, mark
the thread as being a nonworker thread by removing it
from the workers group.

Description:
The dworker command inserts or removes a thread from the workers
group.

If number is 0 or false, this command marks the thread of interest as a non-
worker thread by removing it from the workers group. If number is true or is
a positive value, this command marks the thread of interest as a worker
thread by inserting it in the workers group.

Note that moving a thread into or out of the workers group has no effect
on whether the thread is a “manager” thread. Manager threads are threads
that are created by the pthreads package to manage other threads; they
never execute user code, and cannot normally be controlled individually.
TotalView automatically inserts all threads that are not manager threads
into the workers group.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

wof {dworker false} Removes the focus thread from the
workers group.

wot {dworker true} Inserts the focus thread into the
workers group.
Version 5.0 Command Line Interface Guide 235

2

6
CLI Commands

errorCodes
errorCodes
Returns or raises TotalView error information
Format:

Returns a list of all error code tags

TV::errorCodes

Returns or raises error information

TV::errorCodes number_or_tag [–raise [message]]

Arguments:
number_or_tag Enters an error code mnemonic tag or its numeric

value.

–raise Raises the corresponding error. If you append a mes-
sage, TotalView returns this string. Otherwise, Total-
View uses the human-readable string for the error.

message An optional string used when raising an error.

Description:
The TV::errorCodes command lets you manipulate the TotalView error
code information placed in the Tcl errorCodes variable. The CLI sets this
variable after every command error. Its value is intended to be easy to
parse in a Tcl script.

When the CLI or TotalView returns an error, errorCode is set to a list whose
format is:

TOTALVIEW error-code subcodes... string

The contents of this lists are as follows:

g The first list element is always TOTALVIEW.

g The second is always the error code.

g subcodes are not used at this time.

g The last element is a string describing the error.

With a tag or number, this command returns a list containing the mne-
monic tag, the numeric value of the tag, and the string associated with the
error.

The –raise option tells the CLI to raise an error. If you add a message, that
message is used as the return value; otherwise, the CLI uses its textual
36 Command Line Interface Guide Version 5.0

CLI Commands

errorCodes
explanation for the error code. This provides an easy way to return
TotalView-style errors from a script.

Examples:
foreach e [TV::errorCodes] {

 puts [eval format {"%20s %2d %s"} [TV::errorCodes $e]] }
Displays a list of all TotalView error codes.
Version 5.0 Command Line Interface Guide 237

2

6
CLI Commands

exit
exit Terminates the debugging session
Format:

exit [–force]

Arguments:
–force Tells the CLI that TotalView should exit without asking

permission.

Description:
The exit command terminates the TotalView session.

After executing this command, the CLI asks if it is all right to exit. If you
answer yes, TotalView exits. If you had entered the CLI from the TotalView
GUI, this command also closes the GUI window.

NOTE Type Ctrl-D to exit from the CLI window without exiting from TotalView.

Any processes and threads that were created by the CLI are destroyed. Any
processes that existed prior to the debugging session (that is, were
attached by the CLI as part of a dattach operation) are detached and left
executing.

The exit and quit commands are interchangeable; they both do exactly the
same thing.

Examples:
exit Exits from the CLI, leaving any “attached” processes

running.
38 Command Line Interface Guide Version 5.0

CLI Commands

focus_groups
focus_groups
Returns a list of groups in the current focus
Format:

TV::focus_groups

Description:
The TV::focus_groups command returns a list of all groups in the current
focus.

Examples:
f d1.< TV::focus_groups

Returns a list containing one entry, which will be the
ID of the control group for process 1.
Version 5.0 Command Line Interface Guide 239

2

6
CLI Commands

focus_processes
focus_processes
Returns a list of processes in the current focus
Format:

TV::focus_processes [–all | –group | –process | –thread]

Arguments:
–all Changes the default width to all.

–group Changes the default width to group.

–process Changes the default width to process.

–thread Changes the default width to thread.

Description:
The TV::focus_processes command returns a list of all processes in the
current focus. If the focus width is something other than d (default), the
focus width determines the set of processes returned. If the focus width is
d, the TV::focus_processes command returns process width. Using any of
the options changes the default width.

Examples:
f g1.< TV::focus_processes

Returns a list containing all processes in the same
control as process 1.
40 Command Line Interface Guide Version 5.0

CLI Commands

focus_threads
focus_threads
Returns a list of threads in the current focus
Format:

TV::focus_threads [–all | –group | –process | –thread]

Arguments:
–all Changes the default width to all.

–group Changes the default width to group.

–process Changes the default width to process.

–thread Changes the default width to thread.

Description:
The TV::focus_threads command returns a list of all threads in the current
focus. If the focus width is something other than d (default), the focus
width determines the set of threads returned. If the focus width is d,
TV::focus_threads returns thread width. Using any of the options changes
the default width.

Examples:
f p1.< TV::focus_threads

Returns a list containing all threads in process 1.
Version 5.0 Command Line Interface Guide 241

2

6
CLI Commands

group
group Sets and gets group properties
Format:

TV::group action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Lists the subcommands that you can use. The CLI
responds by displaying the four subcommands shown
here. Do not use additional arguments with this sub-
command.

get Gets the values of one or more group properties. The
other-args argument can include one or more property
names. The CLI returns these values for these proper-
ties in a list in the same order as you entered the
property names.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for each
group.

properties Lists the properties that the CLI can access. Do not
use additional arguments with this option.

set Sets the values of one or more properties. The other-
args subcommand is a sequence of property name and
value pairs.

object-id The group ID. If you use the –all option, the operation
is carried out on all groups in the current focus.

other-args Arguments required by the get and set subcom-
mands.

Description:
The TV::group command lets you examine and set group properties and
states. These states and properties are:

count The number of members in a group.

id The ID of the object.

member_type The type of the group’s members, either process or
thread.
42 Command Line Interface Guide Version 5.0

CLI Commands

group
member_type_values
Returns a list of all possible values for the
member_type property.

members A list of a group’s processes or threads.

type The group’s type. Possible values are control,
lockstep, share, user, and workers.

type_values Returns a list of all possible values for the type prop-
erty.

Examples:
TV::group get 1 count

Returns the number of objects in group 1.
Version 5.0 Command Line Interface Guide 243

2

6
CLI Commands

help
help Displays help information
Format:

help [topic]

Arguments:
topic The topic or command for which the CLI prints infor-

mation.

Description:
The help command prints information about the specified topic or com-
mand. If you do no use an argument, the CLI displays a list of the topics for
which help is available.

If more than one screen of data would be displayed, the CLI fills the screen
with data and then displays a more prompt. You can then press Enter to see
more data or enter q to return to the CLI prompt.

When you type a topic name, the CLI will attempt to complete what you
type. help also allows you to enter one of the CLI’s built-in aliases. For
example:

d1.<> he a
Ambiguous help topic "a". Possible matches:

alias accessors arguments addressing_expressions
d1.<> he ac
"ac" has been aliased to "dactions":
dactions [bp-ids ...] [-at <source-loc>] [-disabled | -enabled
]

Default alias: ac
...
d1.<> he acc

The following commands provide access to the properties
of

TotalView objects:
...

You can use the capture command to place help information into a vari-
able.
44 Command Line Interface Guide Version 5.0

CLI Commands

help
Command alias:
You may find the following aliases useful:

Examples:
help help Prints information describing the help command.

Alias Definition Meaning

he {help} Displays help information.
Version 5.0 Command Line Interface Guide 245

2

6
CLI Commands

hex2dec
hex2dec Converts to decimal
Format:

TV::hex2dec number

Arguments:
number A hexadecimal number.

Description:
Converts a hexadecimal number into decimal. You can type 0x before this
value. The CLI correctly manipulates 64-bit values, regardless of the size of
a long.
46 Command Line Interface Guide Version 5.0

CLI Commands

image
image Sets and gets image properties
Format:

TV::image action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

add Adds an object to an image. The object-id argument is
required; other-args is followed by two arguments. The
first is the object class of the image. At this release,
this type can only be prototype. The second is the
prototype’s ID. (This is illustrated in the Examples sec-
tion.)

commands Lists the subcommands that you can use. The CLI re-
sponds by displaying the six subcommands shown
here. Do not use additional arguments with this sub-
command.

get Gets the values of one or more image properties. The
other-args argument can include one or more property
names. The CLI returns these values for these proper-
ties in a list in the same order as you entered the
property names.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for each
object.

lookup Looks up an object in the image and returns a list of
IDs of matching objects. The object-id argument is
required; other-args contains two arguments. The first is
the object class of the image and the second is the
name of the object. For example:

TV::image lookup 1|15 type “int *”

If no matching objects are found, the CLI returns an
empty list. You can obtain a list of class objects by
using the lookup_keys property.

properties Lists the properties that the CLI can access. Do not
use additional arguments with this option.
Version 5.0 Command Line Interface Guide 247

2

6
CLI Commands

image
set Sets the values of one or more image properties. The
other-args argument contains property name and value
pairs.

object-id The ID of an image. An image ID is two integers that
identify the base executable and an associated DLL.
You can obtain a list of all image IDs by using the fol-
lowing command:

TV::image get –all id

If you use the –all option, TotalView carries out this
operation on all images in the current focus.

other-args Arguments required by the get and set subcom-
mands.

Description:
The TV::image command lets you examine and set the image properties
and states. These states and properties are:

id The ID of the object.

is_dll A true/false value where 1 indicates the image is a
shared library and 0 if it is an executable.

lookup_keys A list containing the object classes that can be used
in a by name lookup; for example:

TV::image lookup 1|20 types foo

Currently, the only value returned is {types}.

name The name of the image.

prototypes A list of all of the prototypes that apply to an image.

Examples:
TV::image lookup 1|15 type “int *”

Finds the type identifiers for the int * type in image
1|15. The result might be:

1|25 1|76

There can be more than one type with the same name
in an image since many debugging formats provide
separate type definitions in each source file.
48 Command Line Interface Guide Version 5.0

CLI Commands

image
foreach i [TV::image get –all id] {
puts [format “%40s; %s” [TV::image get $i name] $i]}

Lists all current images along with their IDs.

set proto_id [TV::prototype create Array]
Creates a new array prototype.

TV::prototype set $proto_id \
name {^(class|struct) (std::)?vector *<.*>$} \
language C++ \
validate_callback vector_validate \
typedef_callback vector_typedef \
type_callback vector_type \
rank_callback vector_rank \
bounds_callback vector_bounds \
address_callback vector_address

Sets properties for the prototype created in the previ-
ous example.

TV::image add 1|97 prototype $proto_id
Adds a prototype to image 1|97 so that it affects
types defined in that image.
Version 5.0 Command Line Interface Guide 249

2

6
CLI Commands

process
process Sets and gets process properties
Format:

TV::process action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Lists the subcommands that you can use. The CLI
responds by displaying the four subcommands shown
here. Do not use other arguments with this subcom-
mand.

get Gets the values of one or more process properties.
The other-args argument can include one or more prop-
erty names. The CLI returns these property values in a
list whose order is the same as the property names
you entered.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for each
object.

properties Lists the properties that the CLI can access. Do not
use other arguments with this subcommand.

set Sets the values of one or more properties. The other-
args arguments contains pairs of property names and
values.

object-id An identifier for a process. For example, 1 represents
process 1. If you use the –all option, the subcom-
mand is carried out on all objects of this class in the
current focus.

other-args Arguments required by the get and set subcom-
mands.

Description:
The TV::process command lets you examine and set process properties
and states. These states and properties are:

clusterid The ID of the cluster containing a process. This is a
number uniquely identifying the TotalView server that
owns the process. The ID for the cluster TotalView is
running in is always 0 (zero).

duid The internal unique ID associated with an object.
50 Command Line Interface Guide Version 5.0

CLI Commands

process
executable The program’s name.

held A value (either 1 or 0) indicating if the process is held;
1 means that the process is held. (settable)

hostname The name of the process's host system.

id The process ID.

image_ids A list of the IDs of all the images currently loaded into
the process both statically and dynamically. The first
element of the list is the current executable.

nodeid The ID of the node upon which the process is running.
The ID of each processor node is unique within a clus-
ter.

state Current state of the process. See state_values for a
list of states.

state_values Lists all possible values for the state property. These
values can be break, error, exited, running, stopped,
or watch.

syspid The system process ID.

threadcount The number of threads in the process.

threads A list of threads in the process.

Examples:
TV::process get 3 threads

Gets the list of threads for process 3. For example:

1.1 1.2 1.4

TV::process get 1 image_ids
Returns a list of image IDs in process 1. For example:

1|1 1|2 1|3 1|4

f g TV::process get –all id threads
For each process in the group, creates a list with the
process ID followed by the list of threads. For exam-
ple:

{1 {1.1 1.2 1.4}} {2 {2.3 2.5}} {3 {3.1 3.7 3.9}}
Version 5.0 Command Line Interface Guide 251

2

6
CLI Commands

process
foreach i [TV::process get 1 image_ids] {
puts [TV::image get $i name] }

Prints the name of the executable and all shared
libraries currently linked into the focus process. For
example, the output of this command might be:

arraysAIX
/usr/lib/libxlf90.a
/usr/lib/libcrypt.a
/usr/lib/libc.a
52 Command Line Interface Guide Version 5.0

CLI Commands

prototype
prototype Sets and gets prototype properties
Format:

TV::prototype action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Lists the subcommands that you can use. The CLI
responds by displaying the five subcommands shown
here. Do not use other arguments with this subcom-
mand.

create Creates a new prototype object. The object-id argument
is not used; other-args is either Array or Struct, indicat-
ing the kind of prototype being created. You can
change a prototype’s properties up to the time you
add it to an image. After being added, you can no
longer change them.

get Gets the values of one or more prototype properties.
The other-args argument can include one or more prop-
erty names. The CLI returns these property values in a
list whose order is the same as the property names
you entered.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for each
object.

properties Lists the properties that the CLI can access. Do not
use other arguments with this subcommand.

set Sets the values of one or more properties. The other-
args argument consists of pairs of property names and
values. The argument pairs that you can set are listed
later in the section and are described in Chapter 5,
“Type Transformations” on page 87.

object-id The prototype ID. This value is returned when you cre-
ate a new prototype. For example, 1 represents pro-
cess 1. If you use the –all option, the subcommand is
carried out on all objects of this class in the current
focus.

other-args Arguments required by the get and set subcom-
mands.
Version 5.0 Command Line Interface Guide 253

2

6
CLI Commands

prototype
Description:
The TV::prototype command lets you examine and set prototype proper-
ties and states. See Chapter 5, “Type Transformations” on page 87 for
more information. These states and properties are:

address_callback Generates the address of the object’s elements at run
time. It returns either an absolute address, or an
addressing expression that is appended to the
address of the object to give the address of the field.
(Returning an expression is the preferred method.)

For example, you might use a callback if the original
data structure contains information on where the next
data instance resides.

If you are creating a type for a distributed array, this
procedure returns a two-element list. For more infor-
mation, see “Distributed Arrays” on page 107.

The call structure for an address callback is:

address_callback type_id object_addr index [replication]

where: type_id: is the type identifier for the type being proto-
typed.

object_addr: is the address of the object.

index: is the index string for the array element or the
index of the field in the structure.

replication: is only used for distributed array objects. It
indicates that the result is an address and an index
into the distribution to determine the process within
which this element resides, since this is a distributed
array.

bounds_callback This is either a string that specifies the bounds stati-
cally in the format of the prototype’s language, or a
callback that TotalView calls when the object’s
address is known. If you are naming a callback, its call
structure is:

bounds_callback type_id object_addr
54 Command Line Interface Guide Version 5.0

CLI Commands

prototype
This function returns a string in the format of the pro-
totype’s language that describes the current bounds;
for example:

C: [2][40]
Fortran: (-2:10,-5:5)

If the bounds start with a bracket “[“ or a parenthesis
“(“, TotalView assumes they are static; otherwise,
TotalView assumes that the returned value is the name
of a callback function.

As the bracket characters ([]) are special characters in
Tcl, you must escape them even in strings; for exam-
ple \[20\] rather than [20].

distribution_callback
Returns a list of process or thread identifiers that rep-
resent (in order) the processes/threads in which ele-
ments of this array exist. Only use this callback when
your array is distributed over multiple processes. Its
call structure is as follows:

distribution_callback type_id object_addr

TotalView calls this callback with a replication index.
The returned value must have an index into the distri-
bution as well as an address.

id The prototype ID.

language The language for this prototype. It indicates how
TotalView parses and generates bounds and indices.

name The regular expression that TotalView uses to match
types. It must be anchored; that is, it must start with a
“^” character.

rank_callback Returns the rank of the array. TotalView calls this func-
tion when the prototype is modifying a type. Its call
structure is as follows:

rank_callback type_id

type The type of the prototype. This can be either array or
struct.

Lists all possible values for type.
Version 5.0 Command Line Interface Guide 255

2

6
CLI Commands

prototype
type_callback (required) TotalView invokes this callback when the
prototype is modifying a type. Its format is:

type_callback type_id

The value returned depends on whether this is an
array prototype or struct prototype.

Array prototypes: Returns a value that is the type identi-
fier for a single element of the array.

Struct prototypes: Returns a list in the format of the
struct_fields property of a type that describes the
struct type’s fields. If a field in the type requires a call-
back, the addressing section of its field description
should be the string callback rather than an address-
ing expression. In this case, TotalView uses
address_callback to generate the address of this field.

typedef_callback Defines an new_type_id in terms of the old_type_id. You
would use this callback when old_type_id is modified
by this prototype. The format is:

typedef_callback new_type_id old_type_id

TotalView ignores any returned value.

validate_callback (required) TotalView invokes this callback whenever a
type that matches the prototype’s name is defined. It
returns a Boolean value indicating if it should be
applied. This callback lets you have more than one
prototype match a type name, and then investigate
the type to determine if TotalView should apply the
prototype.

The call structure for a validation callback is:

validate_callback type_id

where type_id is the type identifier for the type being
prototyped.

Description:
You will find an extensive discussion and examples in Chapter 5, “Type
Transformations” on page 87.
56 Command Line Interface Guide Version 5.0

CLI Commands

quit
quit Terminates the debugging session
Format:

quit [–force]

Arguments:
–force Tells the CLI that it should close all TotalView pro-

cesses without asking permission.

Description:
The quit command terminates the CLI session.

The exit command terminates the TotalView session.

After executing the quit command, the CLI asks if it is all right to exit. If you
answer yes, TotalView exits. If you had entered the CLI from the TotalView
GUI, this command also closes the GUI window.

NOTE Type Ctrl-D to exit from the CLI window without exiting from TotalView.

Any processes and threads that were created by the CLI are destroyed. Any
processes that existed prior to the debugging session (that is, were
attached by the CLI as part of a dattach operation) are detached and left
executing.

The quit and exit commands are interchangeable; they both do exactly the
same thing.

Examples:
quit Exits the CLI, leaving any “attached” processes run-

ning (in the run-time environment).
Version 5.0 Command Line Interface Guide 257

2

6
CLI Commands

respond
respond Provides responses to commands
Format:

TV::respond response command

Arguments:
response The response to one or more commands. If you

include more than one response, separate the
responses with newline characters.

command One or more commands that the CLI will execute.

Description:
Executes a command. The command argument can be a single command or
a list of commands. In most cases, you will place this information within
braces ({}). If the CLI asks questions while command is executing, you are
not asked for the answer. Instead, the CLI uses the characters in the
response string for it. If more than question is asked and response is used up,
TV::respond starts over at the beginning of the response string. If response
does not end with a newline, TV::respond appends one.

Do not use this command to suppress the MORE prompt in macros. You
should instead use the following command:

dset LINES_PER_SCREEN 0

The most common values for response are y and n.

NOTE If you are using the TotalView GUI and the CLI at the same time, your CLI
command may cause a dialog boxes to appear. You cannot use the TV::respond com-
mand to close or interact with these dialog boxes.

Examples:
TV::response {y} {exit}

Exits from TotalView. This command automatically
answers the “Do you really wish to exit TotalView”
question.

set f1 y
set f2 exit
TV::response $f1 $f2

A way to exit from TotalView without seeing the “Do
you really wish to exit TotalView” question. Neither of
these two uses is recommended. Instead, you can use
“exit –force”.
58 Command Line Interface Guide Version 5.0

CLI Commands

stty
stty Sets terminal properties
Format:

stty [stty-args]

Arguments:
stty-args One or more UNIX stty command arguments as

defined in the man page for your operating system.

Description:
The CLI stty command executes a UNIX stty command on the tty associ-
ated with the CLI window. This lets you set all of your terminal’s properties.
However, this is most often used to set erase and kill characters.

If you start the CLI from a terminal by using the totalviewcli command, the
stty command alters this terminal’s environment. Consequently, the
changes you make using this command are retained within the terminal
after you exit.

If you omit stty-args, the CLI displays information describing your current
settings.

The output from this command is returned as a string.

Examples:
stty Prints information about your terminal settings. The

information printed is the same as if you had entered
stty while interacting with a shell.

stty –a Prints information about all of your terminal settings.

stty erase ^H Sets the erase key to Backspace.

stty sane Resets the terminal’s settings to values that the shell
thinks they should be. If you are having problems with
command-line editing, use this command. (The sane
option is not available in all environments.)
Version 5.0 Command Line Interface Guide 259

2

6
CLI Commands

source_process_startup
source_process_startup
“Sources” a .tvd file when a process is loaded
Format:

TV::source_proccess_startup process_id

Arguments:
process_id The PID of the current process.

Description:
The TV::source_process_startup command loads and interprets the .tvd
file associated with the current process. That is, if a file named execut-
able.tvd exists, the CLI sources it.
60 Command Line Interface Guide Version 5.0

CLI Commands

thread
thread Gets and sets thread properties
Format:

TV::thread action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Lists the subcommands that you can use. The CLI
responds by displaying the four subcommands shown
here. Do not use other arguments with this option.

get Gets the values of one or more thread properties. The
other-args argument can include one or more property
names. The CLI returns these values in a list, and
places them in the same order as the property names
you entered.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for each
object.

properties Lists an object’s properties. Do not use other argu-
ments with this option.

set Sets the values of one or more properties. The other-
args argument contains paired property names and
values.

object-id A thread ID. If you use the –all option, the operation
is carried out on all threads in the current focus.

other-args Arguments required by the get and set subcom-
mands.

Description:
The TV::thread command lets you examine and set the thread properties
and states. These states and properties are:

continuation_sig The signal that should be passed to a thread the next
time it runs. On some systems, the thread receiving
the signal may not always be the one for which this
property was set.

dpid The ID of the process associated with a thread.

duid The internal unique ID associated with the thread.
Version 5.0 Command Line Interface Guide 261

2

6
CLI Commands

thread
held A value (either 1 or 0) indicating if the thread is held; 1
means that the thread is held. (settable)

id The ID of the thread.

manager A value (either 1 or 0) indicating if this is a system
manger thread; 1 means that it is.

pc Current PC at which the target is executing. (settable)

state Current state of the target. See state_values for a list
of states.

state_values A list of values for the state property. These values are
break, error, exited, running, stopped, and watch.

systid The system thread ID.

Examples:
f p3 TV::thread get –all id

Returns a list of thread IDs for process 3. For example:

1.1 1.2 1.4
62 Command Line Interface Guide Version 5.0

CLI Commands

type
type Gets and sets type properties
Format:

TV::type action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Lists the subcommands that you can use. The CLI
responds by displaying the four subcommands shown
here. Do not use other arguments with this option.

get Gets the values of one or more type properties. The
other-args argument can include one or more property
names. The CLI returns these values in a list, and
places them in the same order as the property names
you entered.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for each
object.

properties Lists a type’s properties. Do not use other arguments
with this option.

set Sets the values of one or more type properties. The
other-args argument contains paired property names
and values.

object-id An identifier for an object. For example, 1 represents
process 1, and 1.1 represents thread 1 within process
1. If you use the –all option, the operation is carried
out on all objects of this class in the current focus.

other-args Arguments required by the get and set subcom-
mands.

Description:
The TV::type command lets you examine and set the type properties and
states. These states and properties are:

enum_values For an enumerated type, a list of {name value} pairs
giving the definition of the enumeration. If you apply
this to a non-enumerated type, the CLI returns an
empty list.

id The ID of the object.
Version 5.0 Command Line Interface Guide 263

2

6
CLI Commands

type
image_id The ID of the image in which this type is defined.

language The language of the type.

length The length of the type.

name The name of the type; for example, class foo.

prototype The ID for the prototype. If the object is not proto-
typed, the returned value is {}.

rank (array types only) The rank of the array.

struct_fields (class/struct/union types only). A list of lists giving the
description of all the type’s fields. Each sublist con-
tains the following fields:

{ name type_id addressing properties }

where:

name is the name of the field.

type_id is simply the type_id of the field.

addressing contains additional addressing information
that points to the base of the field.

properties contains an additional list of properties in
the following format:

“[virtual] [public|private|protected] base class”

If no properties apply, this string is null.

If you use get struct_fields for a type that is not a
class, struct, or a union, the CLI returns an empty list.

target For an array or pointer type, returns the ID of the array
member or target of the pointer. If this is not applied
to one of these types, the CLI returns an empty list.

type Returns a string describing this type. For example,
signed integer.

type_values Returns all possible values for the type property.

Examples:
TV::type get 1|25 length target

Finds the length of a type and (assuming it is a pointer
or an array type) the target type. The result may look
something like:
64 Command Line Interface Guide Version 5.0

CLI Commands

type
4 1|12

The following example uses the TV::type properties command to obtain
the list of properties:

d1.<> \
proc print_type {id} {

foreach p [TV::type properties] {
puts [format "%13s %s" $p [TV::type get $id $p]]

}
} d1.<> print_type 1|6

d1.<>

enum_values
id

image_id
language

len.DefShort
Body{

margin-
top:0.0in;

margin-
left:.65in;

}

gth
name

prototype
rank

struct_fields
target

type
type_values

1|6
1|1
f77
4
<integer>

0

Signed Integer
{Array} {Array of characters} {Enumeration}...
Version 5.0 Command Line Interface Guide 265

2

6
CLI Commands

unalias
unalias Removes a previously defined alias
Format:

Removes an alias

unalias alias-name

Removes all aliases

unalias –all

Arguments:
alias-name The name of the alias being deleted.

–all Tells the CLI to remove all aliases.

Description:
The unalias command removes a previously defined alias. You can delete
all aliases by using the –all option. Aliases defined in the tvdinit.tvd file are
also deleted.

Examples:
unalias step2 Removes the step2 alias; step2 is now undefined and

can no longer be used. If step2 was included as part
of the definition of another command, that command
will no longer work correctly. However, the CLI will only
display an error message when you try to execute the
alias that contains this removed alias.

unalias –all Removes all aliases.
66 Command Line Interface Guide Version 5.0

Version 5.0
Appendix A
CLI Command Summary
This appendix contains a summary of all CLI commands.

actionpoint
Gets and sets action point properties

TV::actionpoint action [object-id] [other-args]

alias
Creates or views pseudonyms for commands

alias alias-name defn-body

Views previously defined aliases

alias [alias-name]

capture
Returns a command’s output as a string

capture command

dactions
Displays information, saves, and reloads action points

dactions [ap-id-list] [–at source-loc]
[–enabled | –disabled]

Saves action points to a file

dactions -save [filename]

Loads previously saved action points

dactions -load [filename]
Command Line Interface Guide 267

2

A
CLI Commands

dassign
dassign
Changes the value of a scalar variable

dassign target value

dattach
Brings currently executing processes under CLI control

dattach [-g gid] [-r hname]
[-ask_attach_parallel | -no_attach_parallel]
[-e] fname pid-list

dbarrier
Creates a barrier breakpoint at a source location

dbarrier source-loc [-stop_when hit { group | process | none }]
[-stop_when_done { group | process | none }]

Creates a barrier breakpoint at an address

dbarrier -address addr
[-stop_when_hit { group | process | none }]
[-stop_when_done { group | process | none }]

dbreak
Creates a breakpoint at a source location

dbreak source-loc [–p | –g | -t] [[–l lang] –e expr]

Creates a breakpoint at an address

dbreak –address addr [–p | –g | -t] [[–l lang] –e expr]

dcheckpoint
Creates a checkpoint image of processes (SGI only)

dcheckpoint [after_checkpointing] [-by process_set] [-no_park]
[-ask_attach_parallel | -no_attach_parallel]
[-no_preserve_ids] [-force] checkpoint-name

dcont
Continues execution and waits for execution to stop

dcont
68 Command Line Interface Guide Version 5.0

CLI Commands

dfocus
ddelete
Deletes some action points

 ddelete action-point-list

Deletes all action points

ddelete –a

ddetach
Detaches from the processes

ddetach

ddisable
Disables some action points

ddisable action-point-list

Disables all action points

ddisable –a

ddown
Moves down the call stack

ddown [num-levels]

dec2hex
Converts a decimal number into hexadecimal

TV::dec2hex number

denable
Enables some action points

denable action-point-list

Enables all disabled action points in the current focus

denable –a

dfocus
Changes the target of future CLI commands to this P/T set

dfocus p/t-set

Executes a command within this P/T set

dfocus p/t-set command
Version 5.0 Command Line Interface Guide 269

2

A
CLI Commands

dgo
dgo
Resumes execution of target processes

dgo

dgroups
Adds members to thread and process groups

dgroups -add [-g gid] [id-list]

Deletes groups

dgroups -delete [-g gid]

Intersects a group with a list of processes and threads

dgroups -intersect [-g gid] [id-list]

Prints process and thread group information

dgroups [-list] [pattern]

Creates a new thread or process group

dgroups -new [thread_or_process] [-g gid] [id-list]

Removes members for thread or process groups

dgroups -remove [-g gid] [id-list]

dhalt
Suspends execution of processes

dhalt

dhold
Holds processes

dhold -process

Holds threads

dhold -thread

dkill
Terminates execution of target processes

dkill
70 Command Line Interface Guide Version 5.0

CLI Commands

dprint
dlappend
Appends list elements to a TotalView variable

dlappend variable-name value [...]

dlist
Displays code relative to the current list location

dlist [–n num-lines]

Displays code relative to a named location

dlist source-loc [–n num-lines]

Displays code relative to the current execution location

dlist –e [–n num-lines]

dload
Loads debugging information

dload [-g gid] [-r hname] [-e] executable

dnext
Steps source lines, stepping over subroutines

dnext [num-steps]

dnexti
Steps machine instructions, stepping over subroutines

dnexti [num-steps]

dout
Runs out from current subroutine

dout [frame-count]

Runs until the PC returns into a procedure

dout proc-name

dprint
Prints the value of a variable

dprint variable

Prints the value of an expression

dprint expression
Version 5.0 Command Line Interface Guide 271

2

A
CLI Commands

dptsets
dptsets
Shows status of processes and threads in an array of P/T expressions

dptsets [ptset_array] ...

drerun
Restarts processes

drerun [args]

drestart
Restarts a checkpoint

drestart [process-state] [-no_unpark] [-g gid] [-r host]
[-ask_attach_parallel | -no_attach_parallel]
[-no_preserve_ids] checkpoint-name

drun
Starts or restarts processes

drun [cmd_arguments] [< infile]
[> [>][&] outfile]
[2> [>] errfile]

dset
Creates or changes a CLI state variable

dset [-new] debugger-var value

Views current CLI state variables

dset [debugger-var]

source_process_startup
“Sources” a .tvd file when a process is loaded

TV::source_proccess_startup process_id

dstatus
Shows current status of processes and threads

dstatus

dstep
Steps lines, stepping into subfunctions

dstep [num-steps]
72 Command Line Interface Guide Version 5.0

CLI Commands

dwait
dstepi
Steps machine instructions, stepping into subfunctions

dstepi [num-steps]

dunhold
Releases a process

dunhold -process

Releases a thread

dunhold -thread

dunset
Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values

dunset –all

duntil
Runs to a line

duntil line-number

Runs to an address

duntil -address addr

Runs into a function

duntil proc-name

dup
Moves up the call stack

dup [num-levels]

dwait
Blocks command input until the target processes stop

dwait
Version 5.0 Command Line Interface Guide 273

2

A
CLI Commands

dwatch
dwatch
Defines a watchpoint for a variable

dwatch variable [–length byte-count] [–p | –g | –t]
[[–l lang] –e expr] [–t type]

Defines a watchpoint for an address

dwatch –address addr –length byte-count [–p | –g | –t]
[[–l lang] –e expr] [–t type]

dwhat
Determines what a name refers to

dwhat symbol-name

dwhere
Displays locations in the call stack

dwhere [num-levels] [–args]

Displays all locations in the call stack

dwhere –a [–args]

dworker
Adds or removes a thread from a workers group

dworker { number | boolean }

errorCodes
Returns a list of all error code tags

TV::errorCodes

Returns or raises error information

TV::errorCodes number_or_tag [-raise [message]]

exit
Terminates the debugging session

exit [–force]

focus_groups
Returns a list of groups in the current focus

TV::focus_groups
74 Command Line Interface Guide Version 5.0

CLI Commands

respond
focus_processes
Returns a list of processes in the current focus

TV::focus_processes [-all | -group | -process | -thread]

focus_threads
Returns a list of threads in the current focus

TV::focus_threads [-all | -group | -process | -thread]

group
Gets and sets group properties

TV::group action [object-id] [other-args]

help
Displays help information

help [topic]

hex2dec
Converts to decimal

TV::hex2dec number

image
Gets and sets image properties

TV::image action [object-id] [other-args]

process
Gets and sets process properties

TV::process action [object-id] [other-args]

prototype
Gets and sets prototype properties

TV::prototype action [object-id] [other-args]

quit
Terminates the debugging session

quit [–force]

respond
Provides responses to commands

TV::respond response command
Version 5.0 Command Line Interface Guide 275

2

A
CLI Commands

stty
stty
Sets terminal properties

stty [stty-args]

thread
Gets and sets thread properties

TV::thread action [object-id] [other-args]

type
Gets and sets type properties

TV::type action [object-id] [other-args]

unalias
Removes an alias

unalias alias-name

Removes all aliases

unalias –all
76 Command Line Interface Guide Version 5.0

Version 5.0
Appendix B
CLI Command Default Arena Widths
This appendix lists all CLI commands and their default arena widths.

Command Default Arena Width
actionpoint —

alias —

capture —

dactions process

dassign thread; if the current width is “process”, dassign acts on
each thread in the process

dattach —

dbarrier Obtains focus from the setting of the
SHARE_ACTION_POINT variable; if true, the default is
“group”; if false, the default is “process”

dbreak Obtains focus from the setting of the
SHARE_ACTION_POINT variable; if true, the default is
“group”; if false, the default is “process”

dcheckpoint process

dcont process

ddelete process

ddetach process

ddisable process

ddown thread; if the current width is “process”, ddown acts on
each thread in the process

dec2hex —
Command Line Interface Guide 277

2

B

denable process

dfocus —

dgo process

dgroups The -list option ignores the focus; other options use
group width to find the groups being operated upon and
thread width to find the operands

dhalt process

dhold depends on the -thread or -process option

dkill process; note that killing the primary process for a group
always kills all of its slaves

dlappend —

dlist thread; if the current width is “process”, dlist iterates
over all threads in the process

dload —

dnext process

dnexti process

dout process

dprint thread; if the current width is “process”, dprint acts on
each thread in the process

dptsets —

drerun process

drestart —

drun process

dset —

dstatus process

dstep process

dstepi process

dunhold depends on the -thread or -process option

dunset —

duntil process

Command Default Arena Width
78 Command Line Interface Guide Version 5.0

dup thread; if the current width is “process”, dup acts on
each thread in the process

dwait process

dwatch Obtains focus from the SHARE_ACTION_POINT vari-
able’s setting

true: default to “group”

false: default to “process”

dwhat thread; if the current width is “process”, dwhat acts on
each thread in the process

dwhere thread; if the current width is “process”, dwhere acts on
each thread in the process

dworker thread

errorCodes —

exit —

focus_groups group

focus_processes process

focus_threads thread

group —

help —

hex2dec —

process —

prototype —

quit —

respond —

stty —

thread —

type —

unalias —

Command Default Arena Width
Version 5.0 Command Line Interface Guide 279

2

B

80 Command Line Interface Guide Version 5.0

Version 5.0
Appendix C
Distributed Array Type Mapping
This appendix contains listings of two files. The first, mandel.c, is an OpenMP
program that creates a Mandelbrot set. The second, cyclic_array.tcl, implements
a type mapping that allows TotalView to display the distributed array created by
mandel.c in one Variable Window.

The mandel.c Program
The following program is a simple Mandelbrot program that uses a distrib-
uted array. This program is not a good Mandelbrot program as its purpose
is to demonstrate a method for handling a cyclically distributed array and
how TotalView can reconstruct the global array from the distributed com-
ponents. Filling the array with the Mandelbrot set simply makes it easier to
see that everything is working.

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

/*
 * This represents a square two dimensional array, where the
 * first index is cyclically distributed over the processors.
 */
struct cyclic_array
{

int * local_elements;
int local_count;
int global_count;
Command Line Interface Guide 281

2

C

int numprocs;
int myproc;

};

/*
 * Set up the array.
 */
void setup_array (struct cyclic_array *a, int count, int np, int
me)
{

a->numprocs = np;
a->myproc = me;

a->local_count = count/np + 1;
a->global_count= count;

a->local_elements = malloc (sizeof(int)
* count * a->local_count);

}

/*
 * Compute the owning processor.
 */
int owner_of (struct cyclic_array * a, int ix)
{

return ix%(a->numprocs);
}

/*
 * Compute the address of the local column given the global
 * column’s index.
 */
int * local_column (struct cyclic_array * a, int ix)
{

int owner = owner_of (a, ix);

if (owner != a->myproc)
return (int *)0;

return a->local_elements + (ix/a->numprocs)
* a->global_count;

}

82 Command Line Interface Guide Version 5.0

/*
 * Functions for handling complex numbers
 */
struct complex
{

float re;
float im;

};

float cabs_squared (struct complex * z)
{

return z->re*z->re + z->im*z->im;
}

struct complex
ctimes (struct complex * z0, struct complex * z1)
{

struct complex res;

res.re = z0->re * z1->re - z0->im * z1->im;
res.im = z0->re * z1->im + z0->im * z1->re;

return res;
}

struct complex
cplus (struct complex * z0, struct complex * z1)
{

struct complex res;

res.re = z0->re + z1->re;
res.im = z0->im + z1->im;

return res;
}

/*
 * Compute the number of iterations needed to determine that
 * the value is outside the Mandelbrot set.
 */
int mandel (struct complex z0)
{

Version 5.0 Command Line Interface Guide 283

2

C

struct complex z = z0;
int i;

for (i=0; i<31; i++)
{

if (cabs_squared (&z) >= 4.0)
break;

 /* The Mandelbrot step, z = z*z + z0 */
z = ctimes (&z, &z);
z = cplus (&z, &z0);

}

return i;
}

/* Convert an index into a scaled position in -2..2 */
float position (struct cyclic_array * a, int idx)
{

idx = idx-(a->global_count/2);

return 4*((0.5 + (float) idx)/a->global_count);
}

/*
 * Collect the distributed array and print it.
 * May be rotated...
 */
void print_array (struct cyclic_array * a)
{

int ix;
int * buffer = malloc (sizeof (int) * a->global_count);

for (ix = 0; ix<a->global_count; ix++)
{

int * col = local_column (a, ix);
MPI_Status stat;

if (a->myproc == 0)
{ /* First process does the printing */

int iy;
84 Command Line Interface Guide Version 5.0

if (col == 0)
{

MPI_Recv (buffer, a->global_count, MPI_INT,
MPI_ANY_SOURCE, ix,
MPI_COMM_WORLD, &stat);

col = buffer;
}

for (iy=0; iy<a->global_count; iy++)
{

printf (“%2d “, col[iy]);
}
printf (“\n”);

}
else
{ /* All others send the data */

if (col != 0)
{

MPI_Send (col, a->global_count, MPI_INT, 0,
ix, MPI_COMM_WORLD);

}
}

}

MPI_Barrier (MPI_COMM_WORLD);
free (buffer);

}

/* We could read this from the user if we wanted to */
#define GLOBAL_SIZE 40

/*
 * Finally we can do the business !
 */
int main (int argc, char ** argv)
{

int myrank;
int nprocs;
struct cyclic_array a;
int ix;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
Version 5.0 Command Line Interface Guide 285

2

C

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

setup_array (&a, GLOBAL_SIZE, nprocs, myrank);

/* For each column we own calculate the results */
for (ix = 0; ix < GLOBAL_SIZE; ix++)
{

int * lp = local_column (&a, ix);

if (lp != 0)
{

struct complex c;
int iy;

c.re = position (&a, ix);

for (iy = 0; iy < GLOBAL_SIZE; iy++)
{

c.im = - position (&a, iy);/* - to flip it vertically */

lp [iy] = mandel (c);
}

}
}

print_array (&a);
}

The cyclic_array.tcl Type Mapping File
The following listing shows the callback and utility procedures as well as
the TV::prototype commands needed to implement a type mapping that
allows you to view a distributed array.

Check that the type is what we expect, and that we can
locate the appropriate fields.
#
We're expecting
struct cyclic_array
{
86 Command Line Interface Guide Version 5.0

int * local_elements;
int local_count;
int global_count;
int numprocs;
int myproc;
};

proc da_validate {instance_id} {
global _da_info

set fields [TV::type get $instance_id struct_fields]
#
We'll save four properties of each type:
The offset of the pointer to the local array.
The target type identifier.
The target type size
The offset of the local_count
The offset of the global count
set typeinfo [list {} {} {} {} {}]
set matched 0

foreach field $fields {
set name [lindex $field 0]
set addressing [lindex $field 2]

switch -- $name {
local_elements {

set typeinfo [lreplace $typeinfo 0 0 \
[extract_offset $addressing]]

Extract the target type too.
set field_typeid \

[TV::type get [lindex $field 1] target]

set typeinfo [lreplace $typeinfo 1 1 $field_typeid]
set typeinfo [lreplace $typeinfo 2 2 \

[TV::type get $field_typeid length]]

incr matched
}

local_count {
set typeinfo [lreplace $typeinfo 3 3 \

[extract_offset $addressing]]
Version 5.0 Command Line Interface Guide 287

2

C

incr matched
}

global_count {
set typeinfo [lreplace $typeinfo 4 4 \

[extract_offset $addressing]]
incr matched

}
}

}

if {$matched != 3} {
return false

}

set _da_info($instance_id) $typeinfo
return true;

}

#
Copy any properties we require when defining a new type as a
typedef for a type which already has this prototype.
#
proc da_typedef {new_id old_id} {

global _da_info
set _da_info($new_id) $_da_info($old_id)

}

#
Return the target type for this array.
#
proc da_type {instance_id} {

global _da_info
set typeinfo $_da_info($instance_id)

return [lindex $typeinfo 1]
}

#
It's a two-dimensional array.
#
proc da_rank {type_id} {
88 Command Line Interface Guide Version 5.0

return 2
}

#
Compute the bounds of the required element of the array.
#
proc da_bounds {type_id address} {

global _da_info
set typeinfo $_da_info($type_id)

set address [expr $address + [lindex $typeinfo 4]]
set bound [read_store $address int]

return "\[$bound\]\[$bound\]"
}

#
Compute the address of the required element of the array.
#
proc da_address {type_id address indices replication} {

#
Each element lives in only one place, so we return a null
result if asked for other places for it.
if {$replication != 0} {

return ""
}

global _da_info _da_nprocs

set typeinfo $_da_info($type_id)
set bound [read_store \

[expr $address + [lindex $typeinfo 4]] int]

set distributed_index [lindex $indices 0]
set other_index [lindex $indices 1]
set node [expr $distributed_index%$_da_nprocs]
set local_index [expr $distributed_index/$_da_nprocs]

set element_size [lindex $typeinfo 2]

#
We have to work out the whole address.
#

Version 5.0 Command Line Interface Guide 289

2

C

set delta [expr $element_size* \
($other_index+$bound*$local_index)]

return \
"$node {addc [lindex $typeinfo 0]; indirect; addc $delta}"

}

#
Return the list of process/thread identifiers over which this
array is distributed. In this simple example, any of these
arrays are distributed over all the processes.

proc da_distribution {type_id address} {
#
For the moment we assume this is all items in our
workers group.
global GROUP WGROUP _da_nprocs

Choose the first process in the focus set.
set proc [lindex [TV::focus_processes] 0]

Find the relevant worker group identifier.
set group_id $WGROUP($proc)

Extract the member identifiers from the worker
contents.
set res [lrange $GROUP($group_id) 1 end]

Save the number of processes for later.
set _da_nprocs [llength $res]

return $res
}

90 Command Line Interface Guide Version 5.0

Glossary
ACTION POINT: A debugger feature that allows a user to request that program
execution stop under certain conditions. Action points include breakpoints,
watchpoints, evaluation points, and barriers.

ACTION POINT IDENTIFIER: A unique integer ID associated with an action
point.

ADDRESS SPACE: A region of memory that contains code and data from a pro-
gram. One or more threads can run in an address space. A process normally
contains an address space.

AFFECTED P/T SET: The set of process and threads that will be affected by the
command. For most commands, this is identical to the target P/T set, but in
some cases it may include additional threads. (See “P/T (process/thread)
set” on page 299 for more information.)

AGGREGATED OUTPUT: The CLI compresses output from multiple threads
when they would be identical except for the P/T identifier.

ARENA: A specifier that indicates the processes, threads, and groups upon
which a command executes. Arena specifiers are p (process), t (thread), g
(group), d (default), and a (all).

ASYNCHRONOUS: IWhen processeses communicate with one another, they
send messages. If a process decides that it does not want to wait for an
answer, it is said to run “asynchronously”. For example, in most client/server
programs, one program sends an RPC request to a second program and
then waits to receive a response from the second program. This is the nor-
Version 4.1 Command Line Interface Guide 291

2

Glossary

automatic process acquisition
mal synchronous mode of operation. If, however, the first program sends a
message and then continues executing, not waiting for a reply, the first
mode of operations is said to be asynchronous.

AUTOMATIC PROCESS ACQUISITION: TotalView automatically detects the
many processes that parallel and distributed programs run in, and attaches
to them automatically so you do not have to attach to them manually. This
process is called automatic process acquisition. If the process is on a remote
machine, automatic process acquisition automatically starts the TotalView
Debugger Server (the tvdsvr).

BARRIER: An action point specifying that processes reaching a particular loca-
tion in the source code should stop and wait for other processes to catch
up.

BASE WINDOW: The original Process Window or Variable Window before you
dive into routines or variables. After diving, you can use a Reset or Undive
command to restore this original window.

BLOCKED: A thread state where the thread is no longer executing because it is
wating for an event to occur. In most cases, the thread is blocked because
it is waiting for a mutex or condition state.

BREAKPOINT: A point in a program where execution can be suspended to per-
mit examination and manipulation of data.

CALL STACK: A higher-level view of stack memory, interpreted in terms of
source program variables and locations.

CHILD PROCESS: A process created by another process (see “parent process”
on page 298) when that other process calls fork().

CLOSED LOOP: see closed loop.

CLUSTER DEBUGGING: The action of debugging a program that is running on
a cluster of hosts in a network. Typically, the hosts are homogeneous.

COMMAND HISTORY LIST: A debugger-maintained list storing copies of the
most recent commands issued by the user.
92 Command Line Interface Guide Version 4.1

Glossary

dbfork library
CONDITION SYNCHRONIZATON: A process that delays thread execution until
a condition is satisfied.

CONTEXTUALLY QUALIFIED (SYMBOL): A symbol that is described in terms of
its dynamic context, rather than its static scope. This includes process iden-
tifier, thread identifier, frame number, and variable or subprocedure name.

CORE FILE: A file containing the contents of memory and a list of thread regis-
ters. The operating system dumps (creates) a core file whenever a program
exits because of a severe error (such as an attempt to store into an invalid
address).

CORE-FILE DEBUGGING: A debugging session that examines a core file image.
Commands that modify program state are not permitted in this mode.

CROSS-DEBUGGING: A special case of remote debugging where the host plat-
form and the target platform are different types of machines.

CURRENT FRAME: The current portion of stack memory, in the sense that it
contains information about the subprocedure invocation that is currently
executing.

CURRENT LANGUAGE: The source code language used by the file containing
the current source location.

CURRENT LIST LOCATION: The location governing what source code will be
displayed in response to a list command.

DATASET: A set of array elements generated by TotalView and sent to the Visu-
alizer. (See “visualizer process” on page 304.)

DBELOG LIBRARY: A library of routines for creating event points and generat-
ing event logs from within TotalView. To use event points, you must link your
program with both the dbelog and elog libraries.

DBFORK LIBRARY: A library of special versions of the fork() and execve() calls
used by the TotalView debugger to debug multiprocess programs. If you link
your program with TotalView’s dbfork library, TotalView will be able to auto-
matically attach to newly spawned processes.
Version 4.1 Command Line Interface Guide 293

2

Glossary

debugging information
DEBUGGING INFORMATION: Information relating an executable to the source
code from which it was generated.

DEBUGGER INITIALIZATION FILE: An optional file establishing initial settings
for debugger state variables, user-defined commands, and any commands
that should be executed whenever TotalView or the CLI is invoked. Must be
called .tvdrc.

DEBUGGER PROMPT: A string printed by the CLI that indicates that it is ready
to receive another user command.

DEBUGGER SERVER: See tvdsvr process.

DEBUGGER STATE: Information that TotalView or the CLI maintains in order to
interpret and respond to user commands. Includes debugger modes, user-
defined commands, and debugger variables.

DISTRIBUTED DEBUGGING: The action of debugging a program that is running
on more than one host in a network. The hosts can be homogeneous or het-
erogeneous. For example, programs written with message-passing libraries
such as Parallel Virtual Machine (PVM) or Parallel Macros (PARMACS) run on
more than one host.

DIVE STACK: A series of nested dives that were performed in the same variable
window. The number of greater-than symbols (>) in the upper left-hand cor-
ner of a Variable Window indicates the number of nested dives on the dive
stack. Each time that you undive, TotalView pops a dive from the dive stack
and decrements the number of greater-than symbols shown in the Variable
Window.

DIVING: The action of displaying more information about an item. For example,
if you dive into a variable in TotalView, a window appears with more informa-
tion about the variable.

DOPE VECTOR: This is a runtime descriptor that contains all information about
an object that requires more information than is available as a single pointer
or value. For example, you might declare a Fortran 90 pointer variable that
is a pointer to some other object but which has its own upper bound as fol-
lows:
94 Command Line Interface Guide Version 4.1

Glossary

field editor
integer, pointer, dimension (:) :: iptr

Assume that you initialize it as follows:

iptr => iarray (20:1:-2)

iptr is now a synonym for every other element in the first twenty elements
of iarray and this pointer array is in reverse order. For example, iptr(1) maps
to iarray(20), iptr(2) maps to iarray(18), and so on.

A compiler represents an iptr object using a run time descriptor) that con-
tains (at least) elements such as a pointer to the first element of the actual
data, a stride value, and a count of the number of elements (or equivalently
an upper bound).

DPID: Debugger ID. This is the ID TotalView uses for processes.

EDITING CURSOR: A black rectangle that appears when a TotalView GUI field is
selected for editing. You use field editor commands to move the editing cur-
sor.

EVALUATION POINT: A point in the program where TotalView evaluates a code
fragment without stopping the execution of the program.

EVENT LOG: A file containing a record of events for each process in a program.

EVENT POINT: A point in the program where TotalView writes an event to the
event log for later analysis with TimeScan.

EXECUTABLE: A compiled and linked version of source files, containing a
“main” entry point.

EXPRESSION: An expression consists of symbols (possibly qualified), con-
stants, and operators, arranged in the syntax of the current source lan-
guage. Not all Fortran 90, C, and C++ operators are supported.

EXTENT: The number of elements in the dimension of an array. For example, a
Fortran array of integer(7,8) has an extent of 7 in one dimension (7 rows) and
an extent of 8 in the other dimension (8 columns).

FIELD EDITOR: A basic text editor that is part of TotalView’s interface. The field
editor supports a subset of GNU Emacs commands.
Version 4.1 Command Line Interface Guide 295

2

Glossary

focus
FOCUS: The set of groups, processes, and threads upon which a CLI command
acts. The current focus is indicated in the CLI prompt (if you are using the
default prompt).

FRAME: An area in stack memory containing the information corresponding to
a single invocation of a subprocedure.

FULLY QUALIFIED (SYMBOL): A symbol is fully qualified when each level of
source code organization is included. For variables, those levels are execut-
able or library, file, procedure or line number, and variable name.

GID: The TotalView group ID.

GOI: The group of interest. This is the group that TotalView uses when it is trying
to determine what to step, stop, and the like.

GRIDGET: A dotted grid in the tag field that indicates you can set an action
point on the instruction.

GROUP: When TotalView starts processes, it places related processes in fami-
lies. These families are called “groups.”

GROUP OF INTEREST: The primary group that is affected by a command.

HEAP: An area of memory that your program uses when it dynamically allocates
blocks of memory. It is also how people describe my car.

HOST MACHINE: The machine on which the TotalView debugger is running.

INITIAL PROCESS: The process created as part of a load operation, or that
already existed in the run-time environment and was attached by TotalView
or the CLI.

INFINITE LOOP: See loop, infinite.

LVALUE: A symbol name or expression suitable for use on the left-hand side of
an assignment statement in the corresponding source language. That is, the
expression must be appropriate as the target of an assignment.

LHS EXPRESSION: This is a synonym for lvalue.

LOOP, INFINITE: see infinite loop.
96 Command Line Interface Guide Version 4.1

Glossary

parallel program
LOWER BOUND: The first element in the dimension of an array or the slice of
an array. By default, the lower bound of an array is 0 in C and 1 in Fortran,
but the lower bound can be any number, including negative numbers.

MACHINE STATE: Convention for describing the changes in memory, registers,
and other machine elements as execution proceeds.

MESSAGE QUEUE: A list of messages sent and received by message-passing
programs.

MPICH: MPI/Chameleon (Message Passing Interface/Chameleon) is a freely
available and portable MPI implementation. MPICH was written as a collab-
oration between Argonne National Lab and Mississippi State University. For
more information, see www.mcs.anl.gov/mpi.

MPMD (MULTIPLE PROGRAM MULTIPLE DATA) PROGRAMS: A program in-
volving multiple executables, executed by multiple threads and processes.

MUTEX (MUTUAL EXCLUSION): Techniques for sharing resources so that dif-
ferent users do not conflict and cause unwanted interactions.

NATIVE DEBUGGING: The action of debugging a program that is running on the
same machine as TotalView.

NESTED DIVE: TotalView lets you dive into pointers, structures, or arrays within
a variable. When you dive into one of these elements, TotalView updates the
display so that the new element is displayed. So, a nested dive is a dive
within a dive. You can return to the previous display by selecting the left-fac-
ing arrow in the top right corner of the window.

NODE: A machine on a network. Each machine has a unique network name and
address.

OUT OF SCOPE: When symbol lookup is performed for a particular symbol
name and it is not found in the current scope or any containing scopes, the
symbol is said to be out of scope.

PARALLEL PROGRAM: A program whose execution involves multiple threads
and processes.
Version 4.1 Command Line Interface Guide 297

2

Glossary

parallel tasks
PARALLEL TASKS: Tasks whose computations are independent of each other,
so that all such tasks can be performed simultaneously with correct results.
(llnl)

PARALLELIZABLE PROBLEM: A problem that can be divided into parallel tasks.
This may require changes in the code and/or the underlying algorithm. (llnl)

PARCEL: The number of bytes required to hold the shortest instruction for the
target architecture.

PARENT PROCESS: A process that calls fork() to spawn other processes (usu-
ally called “child processes”).

PARMACS LIBRARY: A message-passing library for creating distributed pro-
grams that was developed by the German National Research Centre for
Computer Science.

PARTIALLY QUALIFIED (SYMBOL): A symbol name that includes only some of
the levels of source code organization (for example, filename and proce-
dure, but not executable). This is permitted as long as the resulting name
can be associated unambiguously with a single entity.

PC: This is an abbreviation for Program Counter.

PID: Depending on context, this is either the “process ID” or the the “program
ID”. In most cases, this will be a process ID.

POI: The process of interest. This is the process that TotalView uses when it is
trying to determine what to step, stop, and the like.

PROCESS: An executable that is loaded into memory and is running (or capable
of running).

PROCESS GROUP: A group of processes associated with a multiprocess pro-
gram. A process group includes program control groups and share groups.

PROCESS/THREAD IDENTIFIER: A unique integer ID associated with a particu-
lar process and thread.

PROCESS OF INTEREST: The primary process that is affected by a command.

PROGRAM EVENT: A program occurrence that is being monitored by TotalView
or the CLI, such as a breakpoint.
98 Command Line Interface Guide Version 4.1

Glossary

satisfied
PROGRAM CONTROL GROUP: A group of processes that includes the parent
process and all related processes. A program control group includes chil-
dren that were forked (processes that share the same source code as the
parent) and children that were forked with a subsequent call to execve()
(processes that do not share the same source code as the parent). Contrast
with share group.

PROGRAM STATE: A higher-level view of the machine state, where addresses,
instructions, registers, and such, are interpreted in terms of source program
variables and statements.

P/T (PROCESS/THREAD) SET: The set of threads drawn from all threads in all
processes of the target program.

PVM LIBRARY: Parallel Virtual Machine library. A message-passing library for
creating distributed programs that was developed by the Oak Ridge
National Laboratory and the University of Tennessee.

RACE CONDITION: A problem that occurs when threads try to simultaneously
access a resource. The result can be a deadlock, data corruption, or a pro-
gram fault.

REMOTE DEBUGGING: The action of debugging a program that is running on a
different machine than TotalView. The machine on which the program is run-
ning can be located many miles away from the machine on which TotalView
is running.

RESUME COMMANDS: Commands that cause execution to restart from a
stopped state: dstep, dgo, dcont, dwait.

RHS EXPRESSION: This is a synonym for rvalue.

RVALUE: An expression suitable for inclusion on the right-hand side of an
assignment statement in the corresponding source language. In other
words, an expression that evaluates to a value or collection of values.

SATISFACTION SET: The set of processes and threads that must be held before
a barrier can be satisfied.

SATISFIED: A condition indicating that all processes or threads in a group have
reached a barrier. Prior to this event, all executing processes and threads are
Version 4.1 Command Line Interface Guide 299

3

Glossary

serial execution
either running because they have not yet hit the barrier or are being held at
the barrier because not all of the processes or threads have reached it. After
the barrier is satisfied, the held processes or threads are released, which
means they can now be run. Prior to this event, they could not be run.

SERIAL EXECUTION: Execution of a program sequentially, one statement at a
time. (llnl)

SERIAL LINE DEBUGGING: A form of remote debugging where TotalView and
the TotalView Debugger Server communicate over a serial line.

SHARE GROUP: A group of processes that includes the parent process and any
related processes that share the same source code as the parent. Contrast
with program control group.

SHARED LIBRARY: A compiled and linked set of source files that are dynami-
cally loaded by other executables—and have no “main” entry point.

SIGNALS: Messages informing processes of asynchronous events, such as seri-
ous errors. The action the process takes in response to the signal depends
on the type of signal and whether or not the program includes a signal han-
dler routine, a routine that traps certain signals and determines appropriate
actions to be taken by the program.

SINGLE STEP: The action of executing a single statement and stopping (as if at
a breakpoint).

SLICE: A subsection of an array, which is expressed in terms of a lower bound,
upper bound, and stride. Displaying a slice of an array can be useful when
working with very large arrays, which is often the case in Fortran programs.

SOURCE FILE: Program file containing source language statements. TotalView
allows you to debug FORTRAN 77, Fortran 90, Fortran 95, C, C++, and
assembler.

SOURCE LOCATION: For each thread, the source code line it will execute next.
This is a static location, indicating the file and line number; it does not, how-
ever, indicate which invocation of the subprocedure is involved.

SPAWNED PROCESS: The process created by a user process executing under
debugger control.
00 Command Line Interface Guide Version 4.1

Glossary

stopped state
SPMD (SINGLE PROGRAM MULTIPLE DATA) PROGRAMS: A program involv-
ing just one executable, executed by multiple threads and processes.

STACK: A portion of computer memory and registers used to hold information
temporarily. The stack consists of a linked list of stack frames that holds
return locations for called routines, routine arguments, local variables, and
saved registers.

STACK FRAME: A section of the stack that contains the local variables, argu-
ments, contents of the registers used by an individual routine, a frame
pointer pointing to the previous stack frame, and the value of the program
counter (PC) at the time the routine was called.

STACK POINTER: A pointer to the area of memory where subprocedure argu-
ments, return addresses, and similar information is stored.

STACK TRACE: A sequential list of each currently active routine called by a pro-
gram and the frame pointer pointing to its stack frame.

STATIC (SYMBOL) SCOPE: A region of a program's source code that has a set
of symbols associated with it. A scope can be nested inside another scope.

STEPPING: Advancing program execution by fixed increments, such as by
source code statements.

STOP SET: A set of threads that should be stopped once an action point has
been triggered.

STOPPED/HELD STATE: The state of a process whose execution has paused in
such a way that another program event (for example, arrival of other threads
at the same barrier) will be required before it is capable of continuing exe-
cution.

STOPPED/RUNNABLE STATE: The state of a process whose execution has
been paused (for example, when a breakpoint triggered or due to some user
command) but can continue executing as soon as a resume command is
issued.

STOPPED STATE: The state of a process that is no longer executing, but will
eventually execute again. This is subdivided into stopped/runnable and
stopped/held.
Version 4.1 Command Line Interface Guide 301

3

Glossary

stride
STRIDE: The interval between array elements in a slice and the order in which
the elements are displayed. If the stride is 1, every element between the
lower bound and upper bound of the slice is displayed. If the stride is 2,
every other element is displayed. If the stride is –1, every element between
the upper bound and lower bound (reverse order) is displayed.

SYMBOL: Entities within program state, machine state, or debugger state.

SYMBOL LOOKUP: Process whereby TotalView consults its debugging informa-
tion to discover what entity a symbol name refers to. Search starts with a
particular static scope and occurs recursively so that containing scopes are
searched in an outward progression.

SYMBOL NAME: The name associated with a symbol known to TotalView (for
example, function, variable, data type, and such).

SYMBOL TABLE: A table of symbolic names (such as variables or functions)
used in a program and their memory locations. The symbol table is part of
the executable object generated by the compiler (with the –g option) and is
used by debuggers to analyze the program.

SYNCHRONIZATION: A mechanism that prevents problems caused by concur-
rent threads manipulating shared resources. The two most common mech-
anisms for synchronizing threads are mutual exclusion and condition
synchronization.

TAG FIELD: The left margin in the Source Pane of the TotalView Process Window
containing boxed line numbers marking the lines of source code that actu-
ally generate executable code.

TARGET MACHINE: The machine on which the process to be debugged is run-
ning.

TARGET PROCESS SET: The target set for those occasions when operations
can only be applied to entire processes, not to individual threads within a
process.

TARGET PROGRAM: The executing program that is the target of debugger oper-
ations.
02 Command Line Interface Guide Version 4.1

Glossary

user interrupt key
TARGET P/T SET: The set of processes and threads upon which a CLI com-
mand will act.

TASK: A logically discrete section of computational work. (This is an informal
definition.) (llnl)

THREAD: An execution context that normally contains a set of private registers
and a region of memory reserved for an execution stack. A thread runs in an
address space.

THREAD EXECUTION STATE: The convention of describing the operations
available for a thread, and the effects of the operation, in terms of a set of
predefined states.

THREAD OF INTEREST: The primary thread that will be affected by a com-
mand.

TID: The thread ID.

TOI: The thread of interest. This is the primary thread that will be affected by a
command.

TRIGGER SET: The set of threads that can trigger an action point (that is, the
threads upon which the action point was defined).

TRIGGERS: The effect during execution when program operations cause an
event to occur (such as, arriving at a breakpoint).

TVDSVR PROCESS: The TotalView Debugger Server process, which facilitates
remote debugging by running on the same machine as the executable and
communicating with TotalView over a TCP/IP port or serial line.

UNDIVING: The action of displaying the previous contents of a window, instead
of the contents displayed for the current dive. To undive, you dive on the
undive icon in the upper right-hand corner of the window.

UPPER BOUND: The last element in the dimension of an array or the slice of an
array.

USER INTERRUPT KEY: A keystroke used to interrupt commands, most com-
monly defined as ^C (Ctrl-C).
Version 4.1 Command Line Interface Guide 303

3

Glossary

variable window
VARIABLE WINDOW: A TotalView window displaying the name, address, data
type, and value of a particular variable.

VISUALIZER PROCESS: A process that works with TotalView in a separate win-
dow, allowing you to see a graphical representation of program array data.

WATCHPOINT: An action point specifying that execution should stop whenever
the value of a particular variable is updated.

Citations

LLNL: This definition was taken from documention residing on the web site of
the Lawrence Livermore National Laboratories. www.llnl.gov

:
04 Command Line Interface Guide Version 4.1

Index
– difference operator 63

Symbols
separator character 80
$newval variable in watchpoints

226
$oldval variable in watchpoints

226
& intersection operator 63
. (dot) current set indicator 41
.tvd files 260
.Xdefaults file 72
/ slash in group specifier 46
< first thread indicator 41
= symbol for PC of current buried

stack frame 173
> symbol for PC 173
@ symbol for action point 173
| union operator 63

A
A Slice of the Reassembled Array

figure 109
-a switch 77
a width specifier 48

examples 51
general discussion 50

abbreviating commands 82

ac, see dactions command
action point identifiers 86, 129,

156
never reused in a session 86

action points 86
default for newly created 204
deleting 123, 150, 242, 248,

250, 254, 261, 263
disabling 152
displaying 129
identifiers 130
information about 129
loading saved information

130
reenabling 156
saving information about 130
sharing 204

actionpoint command 123
actionpoint properties 123
actions, see dactions
adding a prototype 94
adding debugger information 67
adding group members 163
adding groups 162
adding members to a group 45
address callback 92
address procedure 103
address property 123

address, returning 103
address_callback property 254
addressing expressions 114

format 115
advancing and holding processes

85
advancing by steps 211
advancing program execution 85
alias command 126
aliases

built-in 82
default 126
group 82
group, limitations 83
removing 266

all width specifier 42
ambiguous scoping 81
appending to state variable lists

171
apply_prototype_to_focus rou-

tine 99
applying prototypes 98
architecture 205
arena specifiers 41

defined 41
incomplete 57
inconsistent widths 58

arenas 157, 180
Version 4.1 Command Line Interface Guide 305

Index

B

30
defined 39
iterating over 41

ARGS variable 77, 198, 201
modifying 78

ARGS_DEFAULT variable 77, 198,
201

clearing 78
arguments

command line 198
default 201
replacing 78

array prototypes 92
defining bounds 93
defining rank 93
distribution 93

array slice
initializing 9
printing 9

arrays
distributed 107
in global index space 108
run-time bounds 89

arriving at barrier 138
as, see dassign command
assembler instructions, stepping

215
assign, see dassign command
assigning output 76
assigning output to variable 76
assigning p/t set to variable 44
asynchronous processing 16
at, see dattach command
attach, see dattach command
attaching to parallel processes

134

B
b, see dbreak command
ba, see dbarrier
barrier

arriving 138
what else is stopped 137

barrier breakpoint 137, 139
barrier is satisfied 201
barrier points 37, 201

defined 86
barrier, see dbarrier

BARRIER_STOP_ALL variable 201
BARRIER_STOP_WHEN_DONE

variable 201
base class 101
block, specifying in scope 81
blocking command input 224
blocking input 224
blocks, naming 80
bounds callback 93
bounds, returning 102
bounds_callback property 254
break, see dbreak command
breakpoint operator 64
breakpoints

barrier 137
default file in which set 143
defined 86, 137, 142
setting 11
setting at beginning of proce-

dure 143
stopping all processes at 142
temporary 219
triggering 143

built-in alias 82
buried stack frame 172

C
C control group specifier 47
C language escape characters 132
C width specifier 48
call stack 222

displaying 233
callbacks

address 92
bounds 93
distributed 110
distribution 93
rank 93
structure 97
type 92
typedef 91, 93, 104
validation 91

capture command 76, 77, 128,
244

CGROUP 53
CGROUP variable 201
changing dynamic context 222

changing focus 157
changing process thread set 38
changing program state 69
changing state variables 200
changing value of program vari-

able 132, 146, 165, 169,
183, 196, 217, 219

checkpoint, see dcheckpoint
checkpointing

preserving IDs 146
process state 145
reattaching to parallel 145
restarting 195
scope 145
socket issue 146

clarifying scope with dwhat 81
CLI

and Tcl 1, 67, 68
command results 69
components 67
defined 1
how it operates 67
initialization 71, 72
initialization file 71
interface 69
invoking program from shell

example 73
not a library 68
output 76
relationship to TotalView 68
-s switch 71
scoping interpretation 79
starting 70
starting from command

prompt 70
starting program using 73
using within Tcl, no differenc-

es 68
CLI commands

abbreviating 82
action points 121
alias 126
aliases 277, 281
assigning output to variable

76
capture 76, 77, 128, 244
dactions 129
6 Command Line Interface Guide Version 4.1

Index

C

dassign 132
dattach 85, 134
dbarrier 137
dbreak 142
dcheckpoint 145
dcont 148
ddelete 150
ddetach 151
ddisable 152
ddown 153
dec2hex 155
default focus 39
denable 156
dfocus 157
dgo 59, 160
dgroups 162
dhalt 168
dhold 169
dkill 74, 85, 170
dlappend 171
dlist 172, 204
dload 73, 74, 85, 175
dnext 177
dnexti 180
dout 183
dprint 186
dptsets 190
drerun 74, 193
drestart 195
drun 73, 78, 170, 197
drun, reissuing 198
dset 78, 82, 200
dstatus 209
dstep 41, 43, 59, 211
dstepi 215
dunhold 217
dunset 78, 218
duntil 219
dup 222
dwait 224
dwatch 225
dwhat 81, 229
dwhere 59, 233
dworker 235
environment 119
execution control 121
exit 238

focus of 277, 281
help 244
initialization 120
overview 119
program information 120
propagate_prototypes rou-

tines 98
prototype 89
quit 257
responding to 258
stty 259
summary 267
termination 120
TV::actionpoint 123
TV::errorCodes 236
TV::focus_groups 239
TV::focus_processes 240
TV::focus_threads 241
TV::group 242
TV::hex2dec 246
TV::image 94, 247
TV::image add 98
TV::process 94, 250
TV::prototype 94, 97
TV::prototype command 253
TV::respond 258
TV::source_process_startup

260
TV::thread 261
TV::type 95, 263
unalias 266

CLI prompt 73
CLI variables, see state variables
closed loop, see closed loop
clusterid property 250
co, see dcont command
code, displaying 172
command aliases 277, 281
command arguments 77

clearing example 78
passing defaults 78
setting 77

command focus 277, 281
command input, blocking 224
command line arguments 74, 198
Command Line command 70

Command Line Interpreter, see
CLI

command output 128
command prompts 81

default 81
format 81
setting 82
starting the CLI from 70

command summary 267
COMMAND_EDITING variable

202
commands

interrupting 69
TV::image 94
user-defined 126

commands, responding to 258
compiler

adding debugging informa-
tion 67

compiler information, interpret-
ing 79

completion rules for arena speci-
fiers 57

components of an executing pro-
gram 1

conditional watchpoints 225
cont, see dcont command
continuation_sig property 261
continuous execution 69
control group 24

defined 23
overview 44

control group specifier 47
control in parallel environments

85
control in serial environments 85
control list element 203
Control-C 69
controlling program execution 85
count property 242
creating a group 162, 165
creating a struct transformation

95
creating commands 126
creating groups 28
creating new process objects 175
creating new processes 74
Version 4.1 Command Line Interface Guide 307

Index

D

30
creating prototypes 253
creating the prototype 97, 106
creating threads 18, 160
critical regions 63
ctrl-d to exit CLI 238, 257
current list location 153
current set indicator 41
cyclic_array.tcl typemappings

281

D
D control group specifier 47
d, see ddown command
da_address procedure 113
da_distribution procedure 112
da_validate function 110
dactions command 129
daemons 16, 18
dassign command 132
datatype incompatibilities 132
dattach command 85, 134
dbarrier command 137
dbreak command 142
dcheckpoint command 145

preserving IDs 146
process 145
reattaching to parallel 145
scope 145
socket issue 146

dcont command 148
ddelete command 150
ddetach command 151
ddisable command 152
ddown command 153
de, see ddelete command
deadlocks at barriers 139
debugger

how it operates 67
separate from program 67

debugger initialization 71, 72
debugger initialization file 71

see also initialization
debugger PID 84
debugging option 67
debugging session 85

ending 238
debugging techniques 35

dec2hex command 155
default aliases 126
default arguments 198, 201

modifying 198
default control group specifier 47
default focus 54, 157
default process/thread set 38
default value of variables, restor-

ing 218
default width specifier 42
defining prototypes 91
defining the current focus 204
delete, see ddelete command
deleting action points 123, 150,

242, 248, 250, 254, 261,
263

deleting groups 162, 164
deleting state variables 200
denable command 156
dfocus command 38, 157

as modifier 39
example 39

dgo command 59, 160
dgroups command 162

–add 53, 163
–add command 45
–delete 164
–intersect 164
–list 164
–new 165
–remove 36, 165

dhalt command 168
dhold command 169
di, see ddisable command
difference operator 63
directory search paths 202
disable, see ddisable command
disabling action points 152
discarding buffered output 77
disconnected processing 16
display an object using a proto-

type 91
display call stack 233
displaying code 172
displaying current execution loca-

tion 233

displaying error message informa-
tion 205

displaying expressions 186
displaying help information 244
displaying information on a name

229
displaying values 186
distributed arrays 107
distribution callback 93, 110

da_distribution 112
distribution_callback property

255
dividing work up 17
dkill command 74, 85, 170
dlappend command 171
dlist command 172, 204
dload command 73, 74, 85, 175

returning process ID 76
dlopen() 94
dnext command 177
dnexti command 180
dout command 183
down, see ddown command
dpid 84, 201
dpid property 261
dprint

parsing output 105
dprint command 186
dptsets command 190
drerun command 74, 193
drestart

attaching automatically 195
attaching to processes 195
process state 195

drestart command 195
drun

poe issues 199
drun command 73, 78, 170, 197

reissuing 198
dset command 78, 82, 200

creating a new variable 200
dstatus command 209
dstep command 39, 41, 43, 59,

211
dstepi command 215
duid property 250, 261
dunhold command 217
8 Command Line Interface Guide Version 4.1

Index

G

dunset command 78, 218
duntil

group operations 220
duntil command 60, 219
dup command 222
dwait command 224
dwatch command 225
dwhat command 81, 229

clarifying scope 81
dwhere command 59, 233
dworker command 235

E
effects of parallelism on debugger

behavior 83
eliminating tab processing 173
en, see denable command
enable, see denable command
enabled property 123
ending debugging session 238
enum_values property 263
error message information 205
error operators 64
ERROR state 205
errorCodes command 236
errorCodes variable 236
errors, raising 236
escape characters 132
evaluating state 86
evaluation points

defined 86
see also dbreak
setting 11

executable property 251
executable, specifying name in

scope 80
EXECUTABLE_PATH variable 135,

173, 202
setting 7

executing a start-up file 71
executing as one instruction 180
executing as one statement 177
executing assembler instructions

215
executing program, components

1
executing source lines 211

execution
controlling 85
halting 168

execution location, displaying
233

execve() 44
existent operator 64
exit command 238
expression arguments 79
expression evaluation 79
expression property 123
expression values, printing 186
expressions 63
extract_offset utility procedure

106

F
f, see dfocus command
figures

A Slice of the Reassembled
Array 109

Five Processes and Their
Groups on Two Com-
puters 27

Five Processors and Proces-
sor Groups 25, 26

Four Processor Computer
Networks 20

Four-Processor Computer 19
Internal View of std::vector 90
Mail with Daemon 16
Mapped std::vector<int> 88
Program and Daemons 16
Reassembled Display 108
Standard Display of struct "a"

as an Array 108
Threads 21
Two Computers Working on

One Problem 17
Uniprocessor 15
Unmapped std::vector <int>

88
User Threads and Service

Threads 22
User, Service, and Manager

Threads 23

Visualization of the Reassem-
bled Array 109

Width Specifiers 43
file for start up 71
first thread indicator of < 41
Five Processes and Their Groups

on Two Computers figure
27

Five Processors and Processor
Groups figure 25, 26

focus
commands 277
default 157
defining 204
pushing 39
restoring 39
see also dfocus command

focus of commands 281
focus_groups command 239
focus_processes 240
focus_threads 241
fork() 44
fork_loop.tvd example program

72
four linked processors 19
Four Processor Computer Net-

works figure 20
Four-Processor Computer figure

19

G
-g option 67
g width specifier 48, 54
g, see dgo command
go, see dgo command
goal breakpoint 212
GOI, defined 40
gr, see dgroups
group aliases 82

limitations 83
group command 242
group members, stopping flag

204
group name 46
group number 46
group of interest 212
group stepping 60
Version 4.1 Command Line Interface Guide 309

Index

H

31
group syntax 46
group number 46
naming names 46
predefined groups 46

GROUP variable 202
group width specifier 42
group width stepping behavior

212
group_indicator

defined 46
groups

accessing properties 242
adding 162
adding members 163
creating 28, 162, 165
defined 23, 24, 44
deleting 162, 164
intersecting 162, 164
listing 162, 164
modifying 202
naming 163
overview 23
placing processes in 135
relationships 43
removing 165
removing members 162
returning list of 239
setting 52
setting properties 242

GROUPS variable 203
groups, see dgroups

H
h, see dhalt command
halt, see dhalt command
halting execution 168
held operator 64
held property 251, 262
help command 244
hex2dec command 246
hexadecimal conversion 155
hold, see dhold
holding and advancing processes

85
holding processes 169
holding threads 138, 169
hostname property 251

how a debugger operates 67

I
I/O redirection 193, 197
id property 123, 242, 248, 251,

255, 262, 263
image add prototype command

94
image command 94, 98, 247
image, defined 94
image_id property 264
image_ids property 251
image_load_callbacks list 98, 99
images

getting properties 248
loading 99
setting properties 248

implicitly defined process/thread
set 38

incomplete arena specifier 57
inconsistent widths 58
infinite loop, see loop, infinite
INFO state 205
information on a name 229
initial process 83
initialization file 71, 266

typical contents 71
initialization search paths 71
initializing an array slice 9
initializing an object’s properties

97
initializing debugging state 71
initializing the CLI 71, 72
initializing TotalView after load-

ing an image 99
input, blocking 224
inserting working threads 235
instantiating a prototype 88
instructions, stepping 215
interactive CLI 67
interface to CLI 69
interleaving messages 75
Internal View of std::vector figure

90
interpreting compiler informa-

tion 79
interrupting commands 69

intersecting groups 162, 164
intersection operator 63
invoking CLI program from shell

example 73
is_dll property 248
iterating over a list 58
iterating over arenas 41

K
k, see dkill command
kill, see dkill command

L
L lockstep group specifier 47, 48
l, see dlist command
Laminate command 107
language property 124, 255, 264
launching processes 197
LD_LIBRARY_PATH 72
length property 124, 264
levels, moving down 153
line numbers for specifying

blocks 80
line property 124
lines for listing 204
LINES_PER_SCREEN variable 77,

203
list location 153
list, see dlist command
list_type 96
list_validate procedure 95
listing groups 162, 164

using a regular expression
164

lists with inconsistent widths 58
lists, iterating over 58
LM_LICENSE_FILE 72
lo, see dload command
load, see dload command
loading action point information

130
loading tvd files 260
lockstep group 25, 40, 63

defined 24
number of 45
overview 45

lockstep group specifier 47
lockstep list element 203
0 Command Line Interface Guide Version 4.1

Index

P

lookup_keys property 248
loop, infinite, see infinite loop

M
machine instructions, stepping

215
Mail with Daemons figure 16
make_actions.tcl sample macro

11, 72
manager property 262
manager threads 21, 26
manager threads, running 211
mandel.c 107, 110, 281
Mandelbrot set 107
Mapped std::vector<int> figure

88
matching processes 60
MAX_LIST variable 172, 204
member_type property 242
member_type_values property

243
members property 243
message interleaving 75
missing TID 44
mixing arena specifiers 58
modifying groups 202
more processing 77, 186
more prompt 77, 203, 244
mpirun 20
MPMD (Multiple Program Multiple

Data) 2
multiple executables 2
multiprocess programs

attaching to processes 135
process groups 44

multiprocessing 19

N
n, see dnext command
name property 248, 255, 264
name, information about 229
names of symbols 78
namespaces 78, 200

TV:: 78, 200
TV::GUI:: 78, 200

nested subroutines
stepping out of 183

new groups 165
newval variable in watchpoints

226
next, see command
nexti, see dnexti command
ni, see dnexti command
nodeid property 251
nonexistent operators 64
non-sequential program execu-

tion 69
nonstack opcodes 116

O
object

displaying with a prototype
91

objects
generating address 92
initializing properties 97

oldval variable in watchpoints
226

omitting components in creating
scope 81

omitting period in specifier 58
omitting width specifier 57, 58
opcodes

nonstack 116
special 117
without opcodes 117

operands
top of stack 116

operands without opcodes 117
operators

- difference 63
& intersection 63
| union 63
breakpoint 64
error 64
existent 64
held 64
nonexistent 64
running 64
stopped 64
unheld 64
watchpoint 64

out, see dout
output

assigning output to variable
76

discarding 77
from CLI 76
only last command executed

returned 76
printing 76
returning 76
when not displayed 76

P
p width specifier 48
p, see dprint command
p.t notation 41
p/t expressions 190
p/t set expressions 63
p/t sets

arguments to Tcl 38
defined 38
grouping 64
set of arenas 41
syntax 42

p/t syntax
group syntax 46

parallel environments
execution control 85

parallel program, defined 83
parsing comments example 11
parsing dprint output 105
passing default arguments 78
pc property 262
pid specifier, omitting 57
piling up 62
POI, defined 40
preserving IDs in checkpoint 146
print, see dprint command
printing an array slice 9
printing expression values 186
printing information about cur-

rent state 209
printing variable values 186
procedure, specifying name in

scope 81
Process > Startup 160
process barrier 139
process barrier breakpoint, see

barrier breakpoint
Version 4.1 Command Line Interface Guide 311

Index

Q

31
process command 94, 250
process group behavior 52
process group stepping 60
process group, see also control

group
process groups 24, 44

synchronizing 61
process groups, see also groups
process information

saving 146
process list element 203
process numbers are unique 83
process objects, creating new

175
process stepping 59
process width specifier 42

omitting 58
process width stepping behavior

212
process/set threads

saving 44
process/thread identifier 83
process/thread notation 83
process/thread sets 84

as arguments 38
changing 157
changing focus 38
default 38
examples 44
implicitly defined 38
inconsistent widths 58
structure of 42
target 38
widths inconsistent 58

process_id.thread_id 41
process_load_callbacks 99
processes

and threads 1
attaching to 134, 175
creating new 74
current status 209
destroyed when exiting CLI

238, 257
holding 169
initial 83
properties 250
releasing 217

releasing control 151
restarting 193, 197, 272
returning list of 240
spawned 83
starting 193, 197, 272
stepping 59
synchronizing 61, 86
terminating 74, 170
when stopped 60

processors and threads 19
Program and Daemons figure 16
program control groups, defined

44
program control groups, placing

processes in 135
program execution

advancing 85
controlling 85

program state
changing 69

program stepping 211
program symbols 79
program variable, changing value

132, 146, 165, 169, 183,
196, 217, 219

prompt
and width specifier 50

PROMPT variable 82, 204
prompting when screen is full 186
prototype command 89, 253

TV::prototype 90
prototype commands 106
prototype create command 97
prototype IDs 94
prototype properties 253
prototype property 264
prototype set command 94
prototypes 87

applied to image 248
applying 98
creating 97, 106, 253
defining 91
instantiating 88
language 91
properties 91, 107
regular expression 91
validating 91

validation callback 91
prototypes property 248
pthread ID 84
PTSET variable 204
ptsets, see dptsets
pushing focus 39

Q
quit command 257
quotation marks 132

R
r, see drun command
raising errors 236
rank callback 93
rank property 264
rank, returning 102
rank_callback property 255
read_store utility procedure 105
Reassembled Display figure 108
redefining the type 96
reenabling action points 156
registers, using in evaluations 143
regular expressions 89

in prototype 91
releasing control 151
releasing processes and threads

138, 217
removing aliases 266
removing group member 162
removing groups 165
removing worker threads 235
replacing default arguments 78
replacing tabs with spaces 204
replicated elements 114
rerun, see rerun command
respond 258
restart, see drestart
restarting processes 193, 197,

272
restarting program execution 74
restoring focus 39
restoring variables to default val-

ues 218
results of entering a CLI com-

mand 69
results, assigning output to vari-

ables 76
2 Command Line Interface Guide Version 4.1

Index

S

resuming execution 143, 148,
160, 170

returning error information 236
returning the address 103
returning the rank 102
returning the type 102
root path 205
Root window, starting CLI from

70
routines, stepping out of 183
rr, see drerun command
rules for scoping 80
run, see drun command
running operator 64
running through 62
running to an address 219
run-time bounds 89

S
S share group specifier 47
-s switch to CLI 71
S width specifier 48
s, see dstep command
sample programs

make_actions.tcl 72
sane command argument 70
satisfaction set 138, 201
satisfaction_group property 124
saving action point information

130
saving process information 146
scope 79
scope of symbols 78
scoping as a tree 80
scoping rules 80
scoping, ambiguous 81
scoping, omitting components 81
screen size 203
scrolling output 77
search paths 202
search paths for initialization 71
separate semantics 67
server on each processor 17
service threads 21, 26

waiting for 22
set expressions 63
set indicator, uses dot 41

set, see dset command
setting breakpoints 11
setting groups 52
setting lines between more

prompts 203
setting terminal properties 259
SGROUP variable 204
share group

defined 24
overview 45

share group specifier 47
share groups 24, 45, 204
share list element 203
share property 124
SHARE_ACTION_POINT variable

204
share_in_group flag 204
shared library, specifying name in

scope 80
shell, example of invoking CLI

program 73
SHLIB_PATH 72
showing current status 209
si, see dstepi command
SILENT state 205
slash in group specifier 46
source code, displaying 172
source file, specifying name in

scope 81
source_process_startup com-

mand 99, 260
sourcing tvd files 260
spawned process 83
special opcodes 117
specifier combinations 48
specifiers

and dfocus 50
and prompt changes 50
examples 48

specifying groups 46
splitting up work 17
SPMD (Single Program Multiple

Data) 2
stack and processes 1
stack frame 172

moving down through 153
stack movements 222

Standard Display of struct "a" as
an Array figure 108

starting a process 193, 197, 272
starting program under CLI con-

trol 73
starting the CLI 70
Startup command 160
start-up file 71

tvdinit.tvd 126
state property 251, 262
state variables

ARGS 77, 198, 201
ARGS, modifying 78
ARGS_DEFAULT 77, 198, 201
ARGS_DEFAULT, clearing 78
BARRIER_STOP_ALL 201
BARRIER_STOP_WHEN_DON

E 201
CGROUP 201
changing 200
COMMAND_EDITING 202
deleting 200
EXECUTABLE_PATH 135,

173, 202
GROUP 202
GROUPS 203
LINES_PER_SCREEN 77, 203
MAX_LIST 172, 204
PROMPT 82, 204
PTSET 204
SGROUP 204
SHARE_ACTION_POINT 204
STOP_ALL 204, 227
TAB_WIDTH 173, 204
THREADS 204
TOTAL_VERSION 205
TOTALVIEW_ROOT_PATH

205
TOTALVIEW_TCLLIB_PATH

205
VERBOSE 205
viewing 200
WGROUP 205

state, initializing 71
state_values property 251, 262
std::list definition 95
std::vector 88, 100
Version 4.1 Command Line Interface Guide 313

Index

T

31
installing 90
stderr redirection 193, 197
stdin redirection 193, 197
stdout redirection 193, 197
step, see dstep command
stepi, see dstepi command
stepping 59

at process width 59
at thread width 59
default group 59
goals 60
group width behavior 212
machine instructions 180,

215
piling up 62
process group 60
process width behavior 212
running through 62
see also dnext command, dn-

exti command, dstep
command, and dstepi
command

target program 85
thread group 60
thread width behavior 211
threads 61

stepping a group 60
stepping a process 59
stepping a thread 59
stop group breakpoint 143
stop, defined in a multiprocess

environment 85
STOP_ALL variable 201, 204, 227
stop_group flag 204
stop_when_done property 124
stop_when_hit property 124
stopped operator 64
stopped process

responding to resume com-
mands 139

stopped thread 25
stopping execution 168
stopping group members flag 204
struct prototypes 92
struct transformation, creating 95
struct_fields property 264
structure callback 97

stty command 259
stty sane command 70
symbol lookup 80

and context 80
symbol names 78

specifying in scope 81
symbol scope 78
symbol scoping, defined 80
symbol specification, omitting

components 81
symbols as arguments 79
symbols, interpreting 132
synchronizing processes 61, 86
syspid property 251
system PID 84
system TID 84
system variables, see state vari-

ables
systid 84
systid property 262

T
t width specifier 48
tab processing 173
TAB_WIDTH variable 173, 204
tabs, replacing with spaces 204
target process/thread set 38, 85
target processes 168

terminating 170
target program

defined 2
stepping 85

target property 264
Tcl

and CLI 67, 68
and the CLI 1
books for learning 2
CLI and thread lists 68
interpreter 1
version based upon 68

Tcl callback functions 87
terminal properties, setting 259
terminating debugging session

238
terminating processes 74, 170
thread barrier breakpoint, see

barrier breakpoint

thread command 261
thread group behavior 52
thread group stepping 60
thread groups 24, 44

see also groups
thread ID 84
thread list element 203
thread numbers are unique 83
thread of interest 39, 41, 43, 211,

219
defined 41

thread stepping 61
platforms where allowed 59

thread width 59
thread width specifier 42

omitting 58
thread width stepping behavior

211
threadcount property 251
threads

and processes 1
creating 18, 160
current status 209
getting properties 261
holding 138, 169
identifying service 22
manager 21
not available on all systems

24
releasing 217
returning list of 241
service 21
setting properties 261
stepping 59
user 21
worker 23
workers 22

threads destroyed when exiting
CLI 238, 257

Threads figure 21
threads model 18
threads property 251
THREADS variable 204
tid 84
TID missing in arena 44
TOI, defined 40
Tools > Command Line 70
4 Command Line Interface Guide Version 4.1

Index

W

top of stack operands 116
TotalView

executable 205
relationship to CLI 68
scoping interpretation 79
starting the CLI within 70

totalview command 71
TOTALVIEW_ROOT_PATH vari-

able 205
TOTALVIEW_TCLLIB_PATH vari-

able 205
TOTALVIEW_VERSION variable

205
totalviewcli command 70, 71, 73
triggering breakpoints 143
troubleshooting 4
TV:: namespace 78, 200
TV::actionpoint command 123
TV::errorCodes 236
TV::focus_groups command 239
TV::focus_processes 240
TV::focus_threads 241
TV::group 242
TV::GUI:: namespace 78, 200
TV::hex2dec 246
TV::image 94
TV::image add 98
TV::image add prototype 94
TV::image command 247
TV::image_load_callbacks list 98,

99
TV::process 94
TV::process command 250
TV::process_load_callbacks list

99
TV::propagate_prototypes 98
TV::prototype 253
TV::prototype command 89, 90,

106
TV::prototype create 97
TV::prototype set 94
TV::respond 258
TV::source_process_startup com-

mand 260
TV::source_process_startup rou-

tine 99
TV::thread command 261

TV::type 95, 114
TV::type command 263
tvd files 260
TVD.breakpoints file 130
tvdinit.tvd start-up file 126, 266
Two Computers Working on One

Problem figure 17
type

returning 102
validating 110

type callback 92
type command 95, 114, 263
type property 124, 243, 255, 264
type transformation 87

as regular expression 89
casting to original 90
creating 89
defining type 92
how applied 90
parallel applications 107
redefining the type 96
underlying implementation 90
using 89
validating 95

type_callback property 256
type_values property 124, 243,

264
typedef callback 91, 93, 104
typedef_callback property 256

U
u, see dup command
ultimate base class 101
ultimate_base utility procedure

105
unalias command 266
unconditional watchpoints 225
unheld operator 64
unhold, see dunhold
union operator 63
Uniprocessor figure 15
unique process numbers 83
unique thread numbers 83
Unmapped std::vector <int> fig-

ure 88
unset, see dunset command
until, see duntil

up, see dup command
user created groups

modifying 202
user mode 21
user threads 21
User Threads and Service Threads

figure 22
User, Service, and Manager

Threads figure 23
user-defined commands 126
using quotation marks 132
utility procedures

extract_offset 106
read_store 105
ultimate_base 105

V
validate_callback property 256
validating the data type 110
validating the type 95
value for newly created action

points 204
values, printing 186
variables

assigning command output to
128

assigning p/t set to 44
changing values 132, 146,

165, 169, 183, 196, 217,
219

printing 186
setting command output to

76
watched 226
watching 225

vector_address procedure 103
vector_bounds procedure 102
vector_rank procedure 102
vector_type procedure 102
vector_validate routine 100
VERBOSE variable 205
View > Laminate 107
viewing state variables 200
Visualization of the Reassembled

Array figure 109

W
W width specifier 48
Version 4.1 Command Line Interface Guide 315

Index

W

31
W workers group specifiers 47
wa, see dwatch command
wait, see dwait command
WARNING state 205
watch, see dwatch command
watchpoint operator 64
watchpoints 225

$newval 226
$oldval 226
conditional 225
defined 86

information not saved 130
length of 226
supported systems 226

WGROUP 53
WGROUP variable 53, 205
wh, see dwhat command
what, see dwhat command
width specifier 41, 44

omitting 57, 58
Width Specifiers figure 43
widths

relationships 43
worker threads 23, 205

inserting 235
removing 235

worker, see dworker
workers group 25

defined 24
overview 45

workers group specifier 47
workers list element 203
working independently 17
6 Command Line Interface Guide Version 4.1

	TotalView Command Line Interface
	What Is the CLI
	Document Contents
	Conventions
	Reporting Problems

	A Few CLI/Tcl Macros
	Setting the EXECUTABLE_PATH State Variable
	Initializing an Array Slice
	Printing an Array Slice
	Writing an Array Variable to a File
	Setting Breakpoints

	Groups, Processes, and Threads
	A Couple of Processes
	Some Threads
	Even More Complicated Programming Models
	More on Threads
	Types of User Threads

	Organizing Chaos
	Creating Groups
	Simplifying What You’re Debugging
	Setting Process and Thread Focus
	Process/Thread Sets
	Arenas
	GOI, POI, and TOI
	Specifying Processes and Threads
	The Thread of Interest

	Examples

	Setting Group Focus
	Specifying Groups in P/T Sets
	Specifier Combinations

	All Does Not Always Mean All
	Setting Groups
	An Extended Example
	Incomplete Arena Specifiers
	Lists with Inconsistent Widths

	Stepping
	Using duntil
	How do I ...

	“Piling Up” vs. “Running Through”
	P/T Set Expressions

	Using the CLI
	How a Debugger Operates
	Tcl and the CLI
	The CLI and TotalView
	The CLI Interface

	Starting the CLI
	Initializing the Debugger
	Start-up Example
	Starting Your Program

	CLI Output
	“more” Processing

	Command Arguments
	Symbols
	Namespaces
	Symbol Names and Scope
	Qualifying Symbol Names

	Command and Prompt Formats
	Built-In Aliases and Group Aliases
	Effects of Parallelism on TotalView and CLI Behavior
	Kinds of IDs

	Controlling Program Execution
	Advancing Program Execution
	Action Points

	Type Transformations
	Type Transformation Defined
	Creating Type Transformations
	Using Type Transformation

	Defining Prototypes
	Objects Used in Type Transformation

	Creating a struct Type Transformation
	Validating the Type: the list_validate Procedure
	Redefining the Type: list_type Procedure
	Creating the Prototype
	Making a Callback for a Structure Element

	Applying Prototypes to Images
	Initializing TotalView After Loading an Image

	An Array-Like Example
	Indicating if a Type Is Mapped: The vector_validate Callback
	Returning the Type: The vector_type Callback
	Returning the Rank: The vector_rank Callback
	Returning the Bounds: The vector_bounds Callback
	Returning the Address: The vector_address Callback
	The typedef Callback

	Utility Procedures
	The read_store Utility Procedure
	The ultimate_base Utility Procedure
	The extract_offset Utility Procedure

	Creating the Prototype

	Distributed Arrays
	Visualizing a Distributed Array with Node Information
	The Type Transformation for mandel.c
	Validating the Data Type: The da_validate Function
	The da_distribution Callback Procedure
	The Distributed Addressing Callback

	Addressing Expressions
	Debugging Tcl Callback Code

	CLI Commands
	Command Overview
	actionpoint
	alias
	capture
	dactions
	dassign
	dattach
	dbarrier
	dbreak
	dcheckpoint
	dcont
	ddelete
	ddetach
	ddisable
	ddown
	dec2hex
	denable
	dfocus
	dgo
	dgroups
	dhalt
	dhold
	dkill
	dlappend
	dlist
	dload
	dnext
	dnexti
	dout
	dprint
	dptsets
	drerun
	drestart
	drun
	dset
	dstatus
	dstep
	dstepi
	dunhold
	dunset
	duntil
	dup
	dwait
	dwatch
	dwhat
	dwhere
	dworker
	errorCodes
	exit
	focus_groups
	focus_processes
	focus_threads
	group
	help
	hex2dec
	image
	process
	prototype
	quit
	respond
	stty
	source_process_startup
	thread
	type
	unalias

	CLI Command Summary
	CLI Command Default Arena Widths
	Distributed Array Type Mapping
	The cyclic_array.tcl Type Mapping File

	Glossary
	Citations

